Applying heat flux method to laminar burning velocity measurements of NH3/CH4/air at elevated pressures and kinetic modeling study

被引:63
|
作者
Wang, Shixing [1 ]
Wang, Zhihua [2 ]
Chen, Chenlin [2 ]
Elbaz, Ayman M. [1 ]
Sun, Zhiwei [3 ,4 ]
Roberts, William L. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
Ammonia; Methane; High pressure; Laminar burning velocity; Chemical kinetic mechanism; PREMIXED FLAMES; MARKSTEIN LENGTH; HIGH-TEMPERATURE; AMMONIA; COMBUSTION; HYDROGEN; MIXTURES; METHANE; CHEMISTRY; OXIDATION;
D O I
10.1016/j.combustflame.2021.111788
中图分类号
O414.1 [热力学];
学科分类号
摘要
Combustion of ammonia (NH3) blended fuels under elevated pressure conditions is critical for adopting this non-carbon fuel in the energy system for decarbonization. In the present work, laminar burning velocities of ammonia/methane(CH4)/air mixtures were measured using the heat-flux method at the pressure from 1 to 5 atm with the mixture equivalence ratios ranging from 0.6 to 1.6 and the mole fraction of NH3 ranging from 0 to 1.0. The relatively completed results obtained at elevated pressures were then used for validating and modifying the kinetic mechanisms (CEU-NH3-Mech 1.0) leading to a new version (CEU-NH3-Mech-1.1). Experimental results of NH3/H-2/air in the present work, NH3/H-2/CO/air mixtures measured on the same setup and reported in our previous works were also considered in the development of the kinetic mechanism. It was found that the CEU-NH3 -Mech-1.1 can predict well the laminar flame speed, ignition delay time and species concentration in the ammonia oxidation at high temperatures for both NH3/CH4/air and NH3/H-2/CO/air mixtures in a wide range of equivalence ratios and elevated pressures, including oxygen-enriched combustion conditions. The present experimental results also show that the value of pressure exponent (beta) varies with the mole fraction of ammonia and behaves differently for the mixtures of ammonia blending into CH4 and H-2 . The kinetic and sensitivity analyses show that the sensitive reactions for beta are weakly correlated to those for the laminar burning velocity, indicating that beta can also work as a potential parameter for validating kinetic mechanisms. Ammonia content in the NH3/CH4/air mixtures determines the pressure exponent variation at over-rich equivalence ratios and reaction pathway variation in the post-flame zone. This work also clarifies the utilization of ammonia containing fuels in rich-lean combustion strategies. (c) 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames
    Okafor, Ekenechukwu C.
    Naito, Yuji
    Colson, Sophie
    Ichikawa, Akinori
    Kudo, Taku
    Hayakawa, Akihiro
    Kobayashi, Hideaki
    COMBUSTION AND FLAME, 2018, 187 : 185 - 198
  • [22] Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations
    Wang, Z. H.
    Yang, L.
    Li, B.
    Li, Z. S.
    Sun, Z. W.
    Alden, M.
    Cen, K. F.
    Konnov, A. A.
    COMBUSTION AND FLAME, 2012, 159 (01) : 120 - 129
  • [23] Effects of CO content on laminar burning velocity of typical syngas by heat flux method and kinetic modeling
    He, Yong
    Wang, Zhihua
    Weng, Wubin
    Zhu, Yanqun
    Zhou, Junhu
    Cen, Kefa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9534 - 9544
  • [24] An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames
    Han, Xinlu
    Lavadera, Marco Lubrano
    Konnov, Alexander A.
    COMBUSTION AND FLAME, 2021, 228 : 13 - 28
  • [25] Experimental and kinetic modeling study of the homogeneous chemistry of NH3 and NOx with CH4 at the diluted conditions
    Sun, Zijian
    Deng, Yuwen
    Song, Shubao
    Yang, Jiuzhong
    Yuan, Wenhao
    Qi, Fei
    COMBUSTION AND FLAME, 2022, 243
  • [26] Effects of CO2 Dilution and CH4 Addition on Laminar Burning Velocities of Syngas at Elevated Pressures: An Experimental and Modeling Study
    Wang, Shixing
    Wang, Zhihua
    Elbaz, Ayman M.
    He, Yong
    Chen, Chenlin
    Zhu, Yanqun
    Roberts, William L.
    ENERGY & FUELS, 2021, 35 (22) : 18733 - 18745
  • [27] Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames
    Filipe Ramos, C.
    Rocha, Rodolfo C.
    Oliveira, Pedro M. R.
    Costa, Mario
    Bai, Xue-Song
    FUEL, 2019, 254
  • [28] LASER-INDUCED FLUORESCENCE MEASUREMENTS OF NO, NH, CN AND CH IN NH3 DOPED CH4 AIR FLAMES
    CHOU, MS
    DEAN, AM
    STERN, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 187 (APR): : 137 - PHYS
  • [29] Influence of NH4H2PO4 powder on the laminar burning velocity of premixed CH4/Air flames
    Hao, Jinyuan
    Du, Zhiming
    Zhang, Tianwei
    Li, Haoyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (90) : 38477 - 38493
  • [30] Experimental and numerical study of the laminar burning velocity of NH3/H2/air premixed flames at elevated pressure and temperature
    Jin, Bao-zhi
    Deng, Yong-Feng
    Li, Guo-xiu
    Li, Hong-meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) : 36046 - 36057