A mixed finite element approximation for Darcy-Forchheimer flows of slightly compressible fluids

被引:3
|
作者
Thinh Kieu [1 ]
机构
[1] Univ North Georgia, Dept Math, 3820 Mundy Mill Rd, Oakwood, GA 30566 USA
关键词
Porous media; Error analysis; Slightly compressible fluid; Dependence on parameters; Numerical analysis; POROUS-MEDIA; STRUCTURAL STABILITY; PARABOLIC EQUATION; MODEL;
D O I
10.1016/j.apnum.2017.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the generalized Forchheimer flows for slightly compressible fluids in porous media. Using Muskat's and Ward's general form of Forchheimer equations, we describe the flow of a single-phase fluid in R-d, d >= 2 by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stability of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters. Published by Elsevier B.V. on behalf of IMACS.
引用
收藏
页码:141 / 164
页数:24
相关论文
共 50 条
  • [21] A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem
    Caucao, Sergio
    Discacciati, Marco
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (05) : 1689 - 1723
  • [22] A Multipoint Flux Mixed Finite Element Method for Darcy-Forchheimer Incompressible Miscible Displacement Problem
    Xu, Wenwen
    Liang, Dong
    Rui, Hongxing
    Li, Xindong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [23] Mixed Element Method for Two-Dimensional Darcy-Forchheimer Model
    Hao Pan
    Hongxing Rui
    Journal of Scientific Computing, 2012, 52 : 563 - 587
  • [24] A mixed element analysis of the Biot's model with Darcy-Forchheimer flow
    Li, Hongpeng
    Rui, Hongxing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 577 - 599
  • [25] Mixed Element Method for Two-Dimensional Darcy-Forchheimer Model
    Pan, Hao
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) : 563 - 587
  • [26] A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem
    Pan, Hao
    Rui, Hongxing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 264 : 1 - 11
  • [27] TWO-LEVEL GALERKIN MIXED FINITE ELEMENT METHOD FOR DARCY-FORCHHEIMER MODEL IN POROUS MEDIA
    Fairag, Faisal A.
    Audu, Johnson D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 234 - 253
  • [28] A fully-mixed finite element method for the coupling of the Navier-Stokes and Darcy-Forchheimer equations
    Caucao, Sergio
    Gatica, Gabriel N.
    Sandoval, Felipe
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2550 - 2587
  • [29] Darcy-Forchheimer flow with nonlinear mixed convection
    T.HAYAT
    F.HAIDER
    A.ALSAEDI
    Applied Mathematics and Mechanics(English Edition), 2020, 41 (11) : 1685 - 1696
  • [30] A fully mixed virtual element method for Darcy-Forchheimer miscible displacement of incompressible fluids appearing in porous media
    Dehghan, Mehdi
    Gharibi, Zeinab
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 797 - 835