A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem

被引:14
|
作者
Caucao, Sergio [1 ]
Discacciati, Marco [2 ]
Gatica, Gabriel N. [3 ,4 ]
Oyarzua, Ricardo [3 ,5 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[2] Loughborough Univ, Dept Math Sci, Epinal Way, Loughborough LE11 3TU, Leics, England
[3] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[5] Univ Bio Bio, GIMNAP Dept Matemat, Casilla 5-C, Concepcion, Chile
关键词
Navier-Stokes problem; Darcy-Forchheimer problem; pressure-velocity formulation; fixed-point theory; mixed finite element methods; a priorierror analysis; BOUNDARY-CONDITIONS; FLUID-FLOW; APPROXIMATION; MODELS;
D O I
10.1051/m2an/2020009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier-Stokes and the Darcy-Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. We consider the standard mixed formulation in the Navier-Stokes domain and the dual-mixed one in the Darcy-Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, anda priorierror estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.
引用
收藏
页码:1689 / 1723
页数:35
相关论文
共 50 条
  • [1] A conforming mixed finite element method for the Navier-Stokes/Darcy coupled problem
    Discacciati, Marco
    Oyarzua, Ricardo
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (02) : 571 - 606
  • [2] A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem
    Marco Discacciati
    Ricardo Oyarzúa
    [J]. Numerische Mathematik, 2017, 135 : 571 - 606
  • [3] A fully-mixed finite element method for the coupling of the Navier-Stokes and Darcy-Forchheimer equations
    Caucao, Sergio
    Gatica, Gabriel N.
    Sandoval, Felipe
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2550 - 2587
  • [4] A fully mixed finite element method for the coupling of the Stokes and Darcy-Forchheimer problems
    Almonacid, Javier A.
    Diaz, Hugo S.
    Gatica, Gabriel N.
    Marquez, Antonio
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (02) : 1454 - 1502
  • [5] A fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity
    Caucao, Sergio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sebestova, Ivana
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (02) : 55 - 88
  • [6] An analysis of a mixed finite element method for a Darcy-Forchheimer model
    Salas, Jose J.
    Lopez, Hilda
    Molina, Brigida
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2325 - 2338
  • [7] A five-field augmented fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Valenzuela, Nathalie
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (08) : 1944 - 1963
  • [8] COUPLING OF DARCY-FORCHHEIMER AND COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HEAT TRANSFER
    Amara, M.
    Capatina, D.
    Lizaik, L.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (02): : 1470 - 1499
  • [9] Multigrid Methods for a Mixed Finite Element Method of the Darcy-Forchheimer Model
    Huang, Jian
    Chen, Long
    Rui, Hongxing
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 396 - 411
  • [10] Mixed Generalized Multiscale Finite Element Method for Darcy-Forchheimer Model
    Spiridonov, Denis
    Huang, Jian
    Vasilyeva, Maria
    Huang, Yunqing
    Chung, Eric T.
    [J]. MATHEMATICS, 2019, 7 (12)