Some more examples of monotonically Lindelof and not monotonically Lindelof spaces

被引:10
|
作者
Levy, Ronnie [1 ]
Matveev, Mikhail [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
Lindelof; compact; monotonically Lindelof; Michael line; Bernstein set; Lusin space; Sorgenfrey line; L-space; C-p space; beta omega;
D O I
10.1016/j.topol.2007.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space is monotonically Lindelof (mL) if one can assign to every open cover U a countable open refinement r (U) (still covering the space) so that r (U) refines r (V) whenever U refines V. Some examples of mL and non-mL spaces are considered. In particular, it is shown that the product of a mL space and the convergent sequence need not be mL, that some L-spaces are mL, and that C-p (X) is mL only for countable X. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2333 / 2343
页数:11
相关论文
共 50 条
  • [41] A RESULT ON MONOTONICALLY METACOMPACT SPACES
    Xu, Ai-Jun
    Shi, Wei-Xue
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (04): : 1437 - 1442
  • [42] On weakly monotonically monolithic spaces
    Peng, Liang-Xue
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (01): : 133 - 142
  • [43] Mappings on weakly Lindelof and weakly regular-Lindelof spaces
    Fawakhreh, Anwar Jabor
    Kilicman, Adem
    APPLIED GENERAL TOPOLOGY, 2011, 12 (02): : 135 - 141
  • [44] ON SOME INTRINSIC-PROPERTIES OF LOCALLY LINDELOF SPACES
    SOMASUNDARAM, D
    SARASWATHI, V
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (02): : 135 - 138
  • [45] Mappings and some decompositions of continuity on nearly Lindelof spaces
    Fawakhreh, AJ
    Kiliçman, A
    ACTA MATHEMATICA HUNGARICA, 2002, 97 (03) : 199 - 206
  • [46] Complementation and decompositions in some weakly Lindelof Banach spaces
    Koszmider, Piotr
    Zielinski, Przemyslaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (01) : 329 - 341
  • [47] Cardinalities of some Lindelof and ω1-Lindelof T1/T2-spaces
    Buzyakova, RZ
    TOPOLOGY AND ITS APPLICATIONS, 2004, 143 (1-3) : 209 - 216
  • [48] A note on monotonically normal spaces
    Y. -Z. Gao
    H. -Z. Qu
    S. -T. Wang
    Acta Mathematica Hungarica, 2007, 117 : 175 - 178
  • [49] Some properties of strongly monotonically T2 spaces
    Zhao B.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 469 - 474
  • [50] The Lindelof property in Banach spaces
    Cascales, B
    Namioka, I
    Orihuela, J
    STUDIA MATHEMATICA, 2003, 154 (02) : 165 - 192