Some more examples of monotonically Lindelof and not monotonically Lindelof spaces

被引:10
|
作者
Levy, Ronnie [1 ]
Matveev, Mikhail [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
Lindelof; compact; monotonically Lindelof; Michael line; Bernstein set; Lusin space; Sorgenfrey line; L-space; C-p space; beta omega;
D O I
10.1016/j.topol.2007.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space is monotonically Lindelof (mL) if one can assign to every open cover U a countable open refinement r (U) (still covering the space) so that r (U) refines r (V) whenever U refines V. Some examples of mL and non-mL spaces are considered. In particular, it is shown that the product of a mL space and the convergent sequence need not be mL, that some L-spaces are mL, and that C-p (X) is mL only for countable X. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2333 / 2343
页数:11
相关论文
共 50 条
  • [21] On monotonically orthocompact spaces
    Jiang, SL
    Xu, YM
    TOPOLOGY PROCEEDINGS, VOL 27, NO 2, 2003, 2003, 27 (02): : 641 - 651
  • [22] SOME REMARKS ON CENTERED-LINDELOF SPACES
    Song, Yan-Kui
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (02): : 277 - 280
  • [23] A NOTE ON LINDELOF SPACES
    DISSANAYAKE, UNB
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (10): : 1117 - 1118
  • [24] On Uniformly Lindelof Spaces
    Kanetov, Bekbolot
    Zhanakunova, Meerim
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325
  • [25] Some notes on quasi-Lindelof spaces
    Song, Yan-Kui
    QUAESTIONES MATHEMATICAE, 2017, 40 (07) : 891 - 896
  • [26] δ*-Lindelof tritopological spaces
    Mousa, Zainab Imran
    Habeeb, Eman Yahea
    Hassan, Asmhan Flieh
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1323 - 1332
  • [27] On productively Lindelof spaces
    Tall, Franklin D.
    Tsaban, Boaz
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (11) : 1239 - 1248
  • [28] SPACES LINDELOF AT INFINITY
    RAYBURN, MC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 154 - &
  • [30] CHARACTERIZATION OF LINDELOF SPACES
    KUTZLER, K
    ARCHIV DER MATHEMATIK, 1975, 26 (02) : 214 - 221