Some more examples of monotonically Lindelof and not monotonically Lindelof spaces

被引:10
|
作者
Levy, Ronnie [1 ]
Matveev, Mikhail [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
Lindelof; compact; monotonically Lindelof; Michael line; Bernstein set; Lusin space; Sorgenfrey line; L-space; C-p space; beta omega;
D O I
10.1016/j.topol.2007.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space is monotonically Lindelof (mL) if one can assign to every open cover U a countable open refinement r (U) (still covering the space) so that r (U) refines r (V) whenever U refines V. Some examples of mL and non-mL spaces are considered. In particular, it is shown that the product of a mL space and the convergent sequence need not be mL, that some L-spaces are mL, and that C-p (X) is mL only for countable X. (c) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:2333 / 2343
页数:11
相关论文
共 50 条
  • [1] WEAKLY LINEARLY LINDELOF MONOTONICALLY NORMAL SPACES ARE LINDELOF
    Juhasz, Istvan
    Tkachuk, Vladimir V.
    Wilson, Richard G.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 523 - 535
  • [2] A NOTE ON MONOTONICALLY STAR LINDELOF SPACES
    Song, Yan-Kui
    QUAESTIONES MATHEMATICAE, 2017, 40 (05) : 581 - 588
  • [3] A result on monotonically Lindelof generalized ordered spaces
    Zhang, Guo-Fang
    Xu, Ai-Jun
    QUAESTIONES MATHEMATICAE, 2016, 39 (06) : 727 - 732
  • [4] A characterization of monotonically Lindelof generalized ordered spaces
    Gao, Yin-Zhu
    Shi, Wei-Xue
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 852 - 859
  • [5] A RESULT ON MONOTONICALLY LINDELOF GENERALIZED ORDERED SPACES
    Xu, Ai-Jun
    Shi, Wei-Xue
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) : 481 - 483
  • [6] SOME PROPERTIES ON MONOTONICALLY META-LINDELOF SPACES AND RELATED CONCLUSIONS
    Li, Hui
    Peng, Liang-Xue
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 945 - 956
  • [7] SOME REMARKS ON ALMOST LINDELOF SPACES AND WEAKLY LINDELOF SPACES
    Song, Yan-Kui
    Zhang, Yun-Yun
    MATEMATICKI VESNIK, 2010, 62 (01): : 77 - 83
  • [8] On some classes of Lindelof Σ-spaces
    Kubis, Wieslaw
    Okunev, Oleg
    Szeptycki, Paul J.
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (14) : 2574 - 2590
  • [9] More on cellular-Lindelof spaces
    Xuan, Wei-Feng
    Song, Yan-Kui
    TOPOLOGY AND ITS APPLICATIONS, 2019, 266
  • [10] Productively Lindelof and indestructibly Lindelof spaces
    Duanmu, Haosui
    Tall, Franklin D.
    Zdomskyy, Lyubomyr
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2443 - 2453