λμ-calculus and Bohm's theorem

被引:30
|
作者
David, R [1 ]
Py, W [1 ]
机构
[1] Math Lab, F-73376 Le Bourget Du Lac, France
关键词
D O I
10.2307/2694930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The lambda mu -calculus is an extension of the lambda -calculus that has been introduced by M Parigot to give an algorithmic content to classical proofs. We show that Bohm's theorem Fails in this calculus.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 50 条
  • [31] A formulation of Noether's theorem for fractional problems of the calculus of variations
    Frederico, Gastao S. F.
    Torres, Delfim F. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 834 - 846
  • [32] Noether's symmetry theorem for nabla problems of the calculus of variations
    Martins, Natalia
    Torres, Delfim F. M.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (12) : 1432 - 1438
  • [33] Calculus style proof of Poncelet's theorem for two ellipses
    Simonic, Aleksander
    ELEMENTE DER MATHEMATIK, 2018, 73 (04) : 145 - 150
  • [34] A formulation of Noether’s theorem for fuzzy problems of the calculus of variations
    Fard O.S.
    Soolaki J.
    Almeida R.
    Afrika Matematika, 2018, 29 (1-2) : 33 - 46
  • [35] A Visualization in GeoGebra of Leibniz's Argument on the Fundamental Theorem of Calculus
    Munoz, Weimar
    Leon, Olga Lucia
    Font, Vicenc
    AXIOMS, 2023, 12 (10)
  • [36] Hudson's theorem and rank one operators in Weyl calculus
    Toft, Joachim
    PSEUDO-DIFFERENTIAL OPERATORS AND RELATED TOPICS, 2006, 164 : 153 - +
  • [37] Analogues to Lie Method and Noether's Theorem in Fractal Calculus
    Golmankhaneh, Alireza Khalili
    Tunc, Cemil
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 15
  • [38] Comment on 'asymmetry of the Aharonov-Bohm diffraction pattern and Ehrenfest's theorem'
    Semon, Mark D.
    Taylor, John R.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1994, 50 (2 pt B):
  • [39] Levinson's theorem and higher degree traces for Aharonov-Bohm operators
    Kellendonk, Johannes
    Pankrashkin, Konstantin
    Richard, Serge
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [40] Ax's lemma and Ax's theorem in the Aichinger-Moosbauer calculus
    Clark, Pete L.
    Triantafillou, Nicholas
    JOURNAL OF ALGEBRA, 2024, 659 : 542 - 580