Smoothed analysis of three combinatorial problems

被引:0
|
作者
Banderier, C
Beier, R
Mehlhorn, K
机构
[1] Univ Paris 13, Inst Galilee, Lab Informat Paris Nord, F-93430 Villetaneuse, France
[2] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Smoothed analysis combines elements over worst-case and average case analysis. For an instance x, the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems and study the smoothed complexity of three classical discrete problems: quicksort, left-to-right maxima counting, and shortest paths.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 50 条
  • [1] ARITHMETIC PROBLEMS OF COMBINATORIAL ANALYSIS
    PAVLOV, AI
    MATHEMATICAL NOTES, 1994, 55 (1-2) : 173 - 177
  • [2] The bicriterion and three-criterion combinatorial optimization problems
    Melamed, II
    Sigal, IK
    DOKLADY AKADEMII NAUK, 1999, 366 (02) : 170 - 173
  • [3] Domination analysis of combinatorial optimization problems
    Gutin, G
    Vainshtein, A
    Yeo, A
    DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) : 513 - 520
  • [4] A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems
    Curticapean, Radu
    Kuennemann, Marvin
    ALGORITHMS - ESA 2013, 2013, 8125 : 349 - 360
  • [5] A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems
    Curticapean, Radu
    Kuennemann, Marvin
    ALGORITHMICA, 2015, 73 (03) : 483 - 510
  • [6] A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems
    Radu Curticapean
    Marvin Künnemann
    Algorithmica, 2015, 73 : 483 - 510
  • [7] Improved Smoothed Particle Hydrodynamics for the Three-Dimensional Solid Impact Problems
    Wang, Lu
    Xu, Fei
    Yang, Yang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (06)
  • [8] Sensitivity Analysis on Constraints of Combinatorial Optimization Problems
    Schulte, Julian
    Nissen, Volker
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 394 - 408
  • [9] An Analysis of Design Problems in Combinatorial Procurement Auctions
    Bichler, Martin
    Pikovsky, Alexander
    Setzer, Thomas
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2009, 1 (01) : 111 - 117
  • [10] Combinatorial and discrete geometric problems in image analysis
    Barneva, Reneta P.
    Brimkov, Valentin E.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2015, 75 (1-2) : 1 - 3