A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems

被引:0
|
作者
Curticapean, Radu [1 ,2 ]
Kuennemann, Marvin [1 ,3 ]
机构
[1] Saarbrucken Grad Sch Comp Sci, Saarbrucken, Germany
[2] Univ Saarland, Dept Comp Sci, D-66123 Saarbrucken, Germany
[3] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
Smoothed analysis; Euclidean optimization problems; Bin packing; Maximum matching; Maximum traveling salesman problem; BIN PACKING; ALGORITHMS; HEURISTICS;
D O I
10.1007/s00453-015-0043-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the smoothed analysis of Euclidean optimization problems. Here, input points are sampled according to density functions that are bounded by a sufficiently small smoothness parameter . For such inputs, we provide a general and systematic approach that allows designing linear-time approximation algorithms whose output is asymptotically optimal, both in expectation and with high probability. Applications of our framework include maximum matching, maximum TSP, and the classical problems of k-means clustering and bin packing. Apart from generalizing corresponding average-case analyses, our results extend and simplify a polynomial-time probable approximation scheme on multidimensional bin packing on -smooth instances, where is constant (Karger and Onak in Polynomial approximation schemes for smoothed and random instances of multidimensional packing problems, pp 1207-1216, 2007). Both techniques and applications of our rounding-based approach are orthogonal to the only other framework for smoothed analysis of Euclidean problems we are aware of (Blaser et al. in Algorithmica 66(2):397-418, 2013).
引用
收藏
页码:483 / 510
页数:28
相关论文
共 50 条
  • [1] A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems
    Curticapean, Radu
    Kuennemann, Marvin
    ALGORITHMS - ESA 2013, 2013, 8125 : 349 - 360
  • [2] A Quantization Framework for Smoothed Analysis of Euclidean Optimization Problems
    Radu Curticapean
    Marvin Künnemann
    Algorithmica, 2015, 73 : 483 - 510
  • [3] Approximation of multistage stochastic programming problems by smoothed quantization
    Smid, Martin
    Kozmik, Vaclav
    REVIEW OF MANAGERIAL SCIENCE, 2024, 18 (07) : 2079 - 2114
  • [4] ANALYSIS OF PROBABILISTIC COMBINATORIAL OPTIMIZATION PROBLEMS IN EUCLIDEAN SPACES
    JAILLET, P
    MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (01) : 51 - 70
  • [5] Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals
    Markus Bläser
    Bodo Manthey
    B. V. Raghavendra Rao
    Algorithmica, 2013, 66 : 397 - 418
  • [6] Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals
    Blaeser, Markus
    Manthey, Bodo
    Rao, B. V. Raghavendra
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 110 - +
  • [7] Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals
    Blaeser, Markus
    Manthey, Bodo
    Rao, B. V. Raghavendra
    ALGORITHMICA, 2013, 66 (02) : 397 - 418
  • [8] Robust predictive quantization: A new analysis and optimization framework
    Fletcher, AK
    Rangan, S
    Goyal, VK
    Ramchandran, K
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 427 - 427
  • [9] PROBABILITY AND PROBLEMS IN EUCLIDEAN COMBINATORIAL OPTIMIZATION
    STEELE, JM
    STATISTICAL SCIENCE, 1993, 8 (01) : 48 - 56
  • [10] Smoothed Analysis of Multiobjective Optimization
    Roglin, Heiko
    Teng, Shang-Hua
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 681 - 690