Smoothed analysis of three combinatorial problems

被引:0
|
作者
Banderier, C
Beier, R
Mehlhorn, K
机构
[1] Univ Paris 13, Inst Galilee, Lab Informat Paris Nord, F-93430 Villetaneuse, France
[2] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Smoothed analysis combines elements over worst-case and average case analysis. For an instance x, the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems and study the smoothed complexity of three classical discrete problems: quicksort, left-to-right maxima counting, and shortest paths.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 50 条
  • [41] Combinatorial packing problems
    Borndörfer, R
    THE SHARPEST CUT: THE IMPACT OF MANFRED PADBERG AND HIS WORK, 2004, 4 : 19 - 32
  • [42] Some Combinatorial Problems (Ⅰ)
    徐利治
    数学研究与评论, 1987, (01) : 157 - 160
  • [43] ON COMBINATORIAL OPTIMIZATION PROBLEMS
    Sharifov, F. A.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 377 - 379
  • [44] ON CERTAIN COMBINATORIAL PROBLEMS
    ROSENSTOCK, H
    MARADUDIN, AA
    AMERICAN JOURNAL OF PHYSICS, 1962, 30 (05) : 330 - &
  • [45] ON COMBINATORIAL TESTING PROBLEMS
    Addario-Berry, Louigi
    Broutin, Nicolas
    Devroye, Luc
    Lugosi, Gabor
    ANNALS OF STATISTICS, 2010, 38 (05): : 3063 - 3092
  • [46] COMBINATORIAL RECONSTRUCTION PROBLEMS
    ALON, N
    CARO, Y
    KRASIKOV, I
    RODITTY, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) : 153 - 161
  • [47] Analysis and Design of Oscillator Coupling for Solving Combinatorial Optimization Problems
    Graber, Markus
    Hofmann, Klaus
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [48] A realistic security analysis of identification schemes based on combinatorial problems
    Poupard, G
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1997, 8 (05): : 471 - 480
  • [49] Dynamic combinatorial optimisation problems: an analysis of the subset sum problem
    Rohlfshagen, Philipp
    Yao, Xin
    SOFT COMPUTING, 2011, 15 (09) : 1723 - 1734
  • [50] Fast DC analysis and its application to combinatorial optimization problems
    Trivedi, G
    Desai, MP
    Narayanan, H
    19TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 2005, : 695 - 700