Extreme Eigenvalue Distributions of Finite Random Wishart Matrices with Application to Spectrum Sensing

被引:0
|
作者
Abreu, Giuseppe [1 ]
Zhang, Wensheng [2 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, Germany Campus Ring 1, D-28759 Bremen, Germany
[2] Keio Univ, Dept Elect & Elect Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
SAMPLE COVARIANCE MATRICES; FADING CHANNELS; CAPACITY; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We employ a unified framework to express the exact cumulative distribution functions (CDF's) and probability density functions (PDF's) of both the largest and smallest eigenvalues of central uncorrelated complex random Wishart matrices of arbitrary (finite) size. The resulting extreme eigenvalue distributions, which are put in simple closed-forms, are then applied to build a Hypothesis-Test to solve the Primary User (PU) detection problem (aka Spectrum Sensing), relevant to Cognitive Radio (CR) applications. The proposed scheme is shown to outperform all asymptotic approaches recently proposed, as consequence of the fact that the distributions of the extreme eigenvalues are closed-form and exact, for any given matrix size.
引用
收藏
页码:1731 / 1736
页数:6
相关论文
共 50 条
  • [41] EIGENVALUE SPECTRUM OF A LARGE SYMMETRIC RANDOM MATRIX WITH A FINITE MEAN
    JONES, RC
    KOSTERLITZ, JM
    THOULESS, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (03): : L45 - L48
  • [42] Quadratic Forms in Random Matrices with Applications in Spectrum Sensing
    Riviello, Daniel Gaetano
    Alfano, Giusi
    Garello, Roberto
    ENTROPY, 2025, 27 (01)
  • [43] SPECTRUM OF RANDOM PERTURBATIONS OF TOEPLITZ MATRICES WITH FINITE SYMBOLS
    Basak, Anirban
    Paquette, Elliot
    Zeitouni, Ofer
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (07) : 4999 - 5023
  • [44] RANDOM MATRICES WITH DISCRETE SPECTRUM AND FINITE TODA CHAINS
    KAVALOV, AR
    MKRTCHYAN, RL
    ZURABYAN, LA
    MODERN PHYSICS LETTERS A, 1991, 6 (39) : 3627 - 3633
  • [45] Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices
    Benaych-Georges, F.
    Guionnet, A.
    Maida, M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1621 - 1662
  • [47] Cooperative Spectrum Sensing of OFDM Signals Using Largest Eigenvalue Distributions
    Wei, Lu
    Tirkkonen, Olav
    2009 IEEE 20TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2009, : 2295 - 2299
  • [48] Eigenvalue Statistics of Finite-Dimensional Random Matrices for MIMO Wireless Communications
    Alfano, Giuseppa
    Tulino, Antonia M.
    Lozano, Angel
    Verdu, Sergio
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 4125 - 4129
  • [49] Improved spectrum sensing algorithms based on eigenvalue ratio of random matrix
    Xu, Jiapin
    Yang, Zhi
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2015, 30 (02): : 282 - 288
  • [50] Limiting eigenvalue distributions of block random matrices with one-dimensional coupling structure
    Tanaka, Toshiyuki
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2169 - 2173