Extreme Eigenvalue Distributions of Finite Random Wishart Matrices with Application to Spectrum Sensing

被引:0
|
作者
Abreu, Giuseppe [1 ]
Zhang, Wensheng [2 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, Germany Campus Ring 1, D-28759 Bremen, Germany
[2] Keio Univ, Dept Elect & Elect Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
SAMPLE COVARIANCE MATRICES; FADING CHANNELS; CAPACITY; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We employ a unified framework to express the exact cumulative distribution functions (CDF's) and probability density functions (PDF's) of both the largest and smallest eigenvalues of central uncorrelated complex random Wishart matrices of arbitrary (finite) size. The resulting extreme eigenvalue distributions, which are put in simple closed-forms, are then applied to build a Hypothesis-Test to solve the Primary User (PU) detection problem (aka Spectrum Sensing), relevant to Cognitive Radio (CR) applications. The proposed scheme is shown to outperform all asymptotic approaches recently proposed, as consequence of the fact that the distributions of the extreme eigenvalues are closed-form and exact, for any given matrix size.
引用
收藏
页码:1731 / 1736
页数:6
相关论文
共 50 条
  • [21] Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
    Majumdar, Satya N.
    Vergassola, Massimo
    PHYSICAL REVIEW LETTERS, 2009, 102 (06)
  • [22] Spectrum Sensing Algorithms via Finite Random Matrices
    Zhang, Wensheng
    Abreu, Giuseppe
    Inamori, Mamiko
    Sanada, Yukitoshi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (01) : 164 - 175
  • [23] ASYMPTOTIC DISTRIBUTIONS OF WISHART TYPE PRODUCTS OF RANDOM MATRICES
    Lenczewski, Romuald
    Salapata, Rafal
    COLLOQUIUM MATHEMATICUM, 2019, 155 (01) : 67 - 106
  • [24] Measuring maximal eigenvalue distribution of Wishart random matrices with coupled lasers
    Fridman, Moti
    Pugatch, Rami
    Nixon, Micha
    Friesem, Asher A.
    Davidson, Nir
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [25] Sparse random matrices: the eigenvalue spectrum revisited
    Semerjian, G
    Cugliandolo, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (23): : 4837 - 4851
  • [26] EIGENVALUE DISTRIBUTION OF RANDOM MATRICES AT THE SPECTRUM EDGE
    NAGAO, T
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (11) : 3845 - 3856
  • [27] Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices
    Perret, Anthony
    Schehr, Gregory
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2016, 5 (01)
  • [28] Eigenvalue-based spectrum sensing using the exact distribution of the maximum eigenvalue of a Wishart matrix
    Pillay, Narushan
    Xu, HongJun
    IET SIGNAL PROCESSING, 2013, 7 (09) : 833 - 842
  • [29] Eigenvalue distributions of large Euclidean random matrices for waves in random media
    Skipetrov, S. E.
    Goetschy, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (06)