Non-commutative Euclidean structures in compact spaces

被引:0
|
作者
Dörfel, BD [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
关键词
D O I
10.1088/0305-4470/34/12/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on results for real deformation parameter q we introduce a compact non-commutative structure covariant under the quantum group SOq(3) for q being a root of unity. To match the algebra of the q-deformed operators with necessary conjugation properties it is helpful to define a module over the algebra generated by the powers of q. In a representation where X-2 is diagonal we show how P-2 can be calculated. To manifest some typical properties, an example of a one-dimensional q-deformed Heisenberg algebra is also considered and compared with the non-compact case.
引用
收藏
页码:2583 / 2594
页数:12
相关论文
共 50 条
  • [1] Non-commutative Euclidean and Minkowski structures
    Lorek, A
    Weich, W
    Wess, J
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 76 (02): : 375 - 386
  • [2] New examples of non-commutative Valdivia compact spaces
    Somaglia, Jacopo
    [J]. FUNDAMENTA MATHEMATICAE, 2018, 243 (02) : 143 - 154
  • [4] Completely positive compact operators on non-commutative symmetric spaces
    Dodds, P. G.
    de Pagter, B.
    [J]. POSITIVITY, 2010, 14 (04) : 665 - 679
  • [5] Completely positive compact operators on non-commutative symmetric spaces
    P. G. Dodds
    B. de Pagter
    [J]. Positivity, 2010, 14 : 665 - 679
  • [6] Consensus in non-commutative spaces
    Sepulchre, Rodolphe
    Sarlette, Alain
    Rouchon, Pierre
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6596 - 6601
  • [7] NON-COMMUTATIVE HARMONIC SPACES
    Constantinescu, Corneliu
    [J]. MATHEMATICAL REPORTS, 2021, 23 (1-2): : 31 - 40
  • [8] Integral non-commutative spaces
    Smith, SP
    [J]. JOURNAL OF ALGEBRA, 2001, 246 (02) : 793 - 810
  • [9] Subspaces of non-commutative spaces
    Smith, SP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (06) : 2131 - 2171
  • [10] Canonical operator space structures on non-commutative Lp spaces
    Fidaleo, F
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) : 226 - 250