Non-commutative Euclidean structures in compact spaces

被引:0
|
作者
Dörfel, BD [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
关键词
D O I
10.1088/0305-4470/34/12/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on results for real deformation parameter q we introduce a compact non-commutative structure covariant under the quantum group SOq(3) for q being a root of unity. To match the algebra of the q-deformed operators with necessary conjugation properties it is helpful to define a module over the algebra generated by the powers of q. In a representation where X-2 is diagonal we show how P-2 can be calculated. To manifest some typical properties, an example of a one-dimensional q-deformed Heisenberg algebra is also considered and compared with the non-compact case.
引用
收藏
页码:2583 / 2594
页数:12
相关论文
共 50 条
  • [21] GLUING NON-COMMUTATIVE TWISTOR SPACES
    Marcolli, Matilde
    Penrose, Roger
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (1-2): : 417 - 454
  • [22] Non-commutative Banach function spaces
    de Pagter, Ben
    [J]. POSITIVITY, 2007, : 197 - +
  • [23] Multiplication operators on non-commutative spaces
    de Jager, P.
    Labuschagne, L. E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 874 - 894
  • [24] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38
  • [25] DYNAMICS IN NON-COMMUTATIVE SPACES AND GENERALIZATIONS
    Martina, Luigi
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (02)
  • [26] Non-commutative spaces in physics and mathematics
    Bigatti, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (17) : 3403 - 3428
  • [27] Moduli spaces of maximally supersymmetric solutions on non-commutative tori and non-commutative orbifolds
    Konechny, A
    Schwarz, A
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2000, (09):
  • [28] Embeddings of non-commutative Lp-spaces into non-commutative L1-spaces, 1 < p < 2
    M. Junge
    [J]. Geometric & Functional Analysis GAFA, 2000, 10 : 389 - 406
  • [29] A non-commutative approach to uniform structures
    El-Saady, Kamal
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (01) : 217 - 225
  • [30] On non-commutative fuzzy logic structures
    Zhang, Xiao-Hong
    [J]. Proceedings of 2006 International Conference on Machine Learning and Cybernetics, Vols 1-7, 2006, : 1867 - 1871