Completely positive compact operators on non-commutative symmetric spaces

被引:0
|
作者
P. G. Dodds
B. de Pagter
机构
[1] Flinders University,School of CSEM
[2] Delft University of Technology,Department of Mathematics, Faculty of EEMCS
来源
Positivity | 2010年 / 14卷
关键词
Completely positive operators; Compact operators; Non-commutative symmetric spaces; Primary 46L52; Secondary 46E30; 47B60;
D O I
暂无
中图分类号
学科分类号
摘要
Under natural conditions, it is shown that a completely positive operator between two non-commutative symmetric spaces of τ-measurable operators which is dominated in the sense of complete positivity by a completely positive compact operator is itself compact.
引用
收藏
页码:665 / 679
页数:14
相关论文
共 50 条
  • [1] Completely positive compact operators on non-commutative symmetric spaces
    Dodds, P. G.
    de Pagter, B.
    [J]. POSITIVITY, 2010, 14 (04) : 665 - 679
  • [2] Multiplication operators on non-commutative spaces
    de Jager, P.
    Labuschagne, L. E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 874 - 894
  • [3] Non-commutative Euclidean structures in compact spaces
    Dörfel, BD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (12): : 2583 - 2594
  • [4] The non-commutative hardy-littlewood maximal function on symmetric spaces of τ−measurable operators
    Nessipbayev, Y.
    Tulenov, K.
    [J]. arXiv, 2020,
  • [5] Non-commutative Hardy-Littlewood maximal operator on symmetric spaces of τ-measurable operators
    Nessipbayev, Y.
    Tulenov, K.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
  • [6] New examples of non-commutative Valdivia compact spaces
    Somaglia, Jacopo
    [J]. FUNDAMENTA MATHEMATICAE, 2018, 243 (02) : 143 - 154
  • [7] Ball covering property from commutative function spaces to non-commutative spaces of operators
    Liu, Minzeng
    Liu, Rui
    Lu, Jimeng
    Zheng, Bentuo
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (01)
  • [8] Non-commutative Yosida-Hewitt Theorems and Singular Functionals in Symmetric Spaces of τ-measurable Operators
    Dodds, Peter G.
    de Pagter, Ben
    [J]. VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 183 - +
  • [9] Completely order bounded maps on non-commutative Lp-spaces
    Neuhardt, Erwin
    [J]. ADVANCES IN OPERATOR THEORY, 2021, 6 (03)
  • [10] Non-commutative analogues of weak compactness criteria in symmetric spaces
    Nessipbayev, Y.
    Sukochev, F.
    Tulenov, K.
    [J]. ADVANCES IN OPERATOR THEORY, 2021, 6 (02)