Factor graphs and the sum-product algorithm

被引:4044
|
作者
Kschischang, FR [1 ]
Frey, BJ
Loeliger, HA
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Univ Waterloo, Fac Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Illinois, Fac Elect & Comp Engn, Urbana, IL 61801 USA
[4] ETH Zentrum, Signal Proc Lab, ISI, CH-8092 Zurich, Switzerland
关键词
belief propagation; factor graphs; fast Fourier transform; forward/backward algorithm; graphical models; iterative decoding; Kalman filtering; marginalization; sum-product algorithm; Tanner graphs; Viterbi algorithm;
D O I
10.1109/18.910572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph. In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.
引用
收藏
页码:498 / 519
页数:22
相关论文
共 50 条
  • [41] On the Discretized Sum-Product Problem
    Guth, Larry
    Katz, Nets Hawk
    Zahl, Joshua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (13) : 9769 - 9785
  • [42] Survey of sum-product networks
    Dai, Qi
    Liu, Jian-Wei
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (11): : 1965 - 1990
  • [43] Robustifying sum-product networks
    Maua, Denis Deratani
    Conaty, Diarmaid
    Cozman, Fabio Gagliardi
    Poppenhaeger, Katja
    de Campos, Cassio Polpo
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 101 : 163 - 180
  • [44] A note on sum-product estimates
    Balog, Antal
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 283 - 289
  • [45] VARIATIONS ON THE SUM-PRODUCT PROBLEM
    Murphy, Brendan
    Roche-Newton, Oliver
    Stkredov, Ilya
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 514 - 540
  • [46] Sum-product graphical models
    Desana, Mattia
    Schnoerr, Christoph
    MACHINE LEARNING, 2020, 109 (01) : 135 - 173
  • [47] An Advanced Cooperative Positioning Algorithm Based on Improved Factor Graph and Sum-Product Theory for Multiple AUVs
    Fan, Shiwei
    Zhang, Ya
    Yu, Chunyang
    Zhu, Minghong
    Yu, Fei
    IEEE ACCESS, 2019, 7 : 67006 - 67017
  • [48] Efficient implementation of the sum-product algorithm for quantized decoding of LDPC codes
    Tong, Sheng
    Wang, Peng
    Wang, Dan
    Wang, Xin-Mei
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2004, 31 (05): : 709 - 713
  • [49] NEW SIMPLIFIED SUM-PRODUCT ALGORITHM FOR LOW COMPLEXITY LDPC DECODING
    Lee, Myung Hun
    Han, Jae Hee
    Sunwoo, Myung Hoon
    2008 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS: SIPS 2008, PROCEEDINGS, 2008, : 61 - 66
  • [50] Classification-Aided Multitarget Tracking Using the Sum-Product Algorithm
    Gaglione, Domenico
    Soldi, Giovanni
    Braca, Paolo
    De Magistris, Giovanni
    Meyer, Florian
    Hlawatsch, Franz
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1710 - 1714