Factor graphs and the sum-product algorithm

被引:4044
|
作者
Kschischang, FR [1 ]
Frey, BJ
Loeliger, HA
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Univ Waterloo, Fac Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Univ Illinois, Fac Elect & Comp Engn, Urbana, IL 61801 USA
[4] ETH Zentrum, Signal Proc Lab, ISI, CH-8092 Zurich, Switzerland
关键词
belief propagation; factor graphs; fast Fourier transform; forward/backward algorithm; graphical models; iterative decoding; Kalman filtering; marginalization; sum-product algorithm; Tanner graphs; Viterbi algorithm;
D O I
10.1109/18.910572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph. In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.
引用
收藏
页码:498 / 519
页数:22
相关论文
共 50 条
  • [31] On the exponential sum-product problem
    Shparlinski, Igor
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (02): : 325 - 331
  • [32] Low Complexity LDPC Decoder with Modified Sum-Product Algorithm
    Chen Qian
    Weilong Lei
    Zhaocheng Wang
    TsinghuaScienceandTechnology, 2013, 18 (01) : 57 - 61
  • [33] Decoding a Family of Dense Codes using the Sum-Product Algorithm
    Perez-Chamorro, Jorge
    Seguin, Fabrice
    Lahuec, Cyril
    Jezequel, Michel
    Le Mestre, Gerald
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 2685 - 2688
  • [34] On Thin Sum-Product Bases
    Hennecart F.
    Prakash G.
    Pramod E.
    Combinatorica, 2022, 42 (2) : 165 - 202
  • [35] An update on the sum-product problem
    Rudnev, Misha
    Stevens, Sophie
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (02) : 411 - 430
  • [36] On sum-product representations in Zq
    Chang, Mei-Chu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2006, 8 (03) : 435 - 463
  • [37] MULTIPLE SUM-PRODUCT IDENTITIES
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 917 - &
  • [38] Residual Sum-Product Networks
    Ventola, Fabrizio
    Stelzner, Karl
    Molina, Alejandro
    Kersting, Kristian
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 545 - 556
  • [39] Sum-Product Network Decompilation
    Butz, Cory J.
    Oliveira, Jhonatan S.
    Peharz, Robert
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 53 - 64
  • [40] Sum-Product Networks: A Survey
    Sanchez-Cauce, Raquel
    Paris, Iago
    Javier Diez, Francisco
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3821 - 3839