On the geometry of geodesics in discrete optimal transport

被引:8
|
作者
Erbar, Matthias [1 ]
Maas, Jan [2 ]
Wirth, Melchior [3 ]
机构
[1] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
HAMILTON-JACOBI EQUATIONS; METRIC-MEASURE-SPACES; RICCI CURVATURE; ENTROPY;
D O I
10.1007/s00526-018-1456-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space of probability measures on a discrete set X, endowed with a dynamical optimal transport metric. Given two probability measures supported in a subset Y. X, it is natural to ask whether they can be connected by a constant speed geodesic with support in Y at all times. Our main result answers this question affirmatively, under a suitable geometric condition on Y introduced in this paper. The proof relies on an extension result for subsolutions to discrete Hamilton-Jacobi equations, which is of independent interest.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Erratum to: On the geometry of spaces of oriented geodesics
    Dmitri V. Alekseevsky
    Brendan Guilfoyle
    Wilhelm Klingenberg
    Annals of Global Analysis and Geometry, 2016, 50 : 97 - 99
  • [42] Geodesics in non-holonomic geometry
    Synge, JL
    MATHEMATISCHE ANNALEN, 1928, 99 : 738 - 751
  • [43] Geodesics and submanifold structures in conformal geometry
    Belgun, Florin
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 91 : 172 - 191
  • [44] Convexity of asymptotic geodesics in Hilbert Geometry
    Charitos, Charalampos
    Papadoperakis, Ioannis
    Tsapogas, Georgios
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (04): : 809 - 828
  • [45] Geometry of adaptive control:: optimization and geodesics
    Colón, D
    Pait, FM
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2004, 18 (04) : 381 - 392
  • [46] SOLVABILITY OF THE INTEGRAL GEOMETRY PROBLEM FOR GEODESICS
    AMIROV, AK
    SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (02) : 199 - 209
  • [47] Convexity of asymptotic geodesics in Hilbert Geometry
    Charalampos Charitos
    Ioannis Papadoperakis
    Georgios Tsapogas
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 809 - 828
  • [48] A discrete method for the initialization of semi-discrete optimal transport problem
    Lin, Judy Yangjun
    Guo, Shaoyan
    Xie, Longhan
    Du, Ruxu
    Xu, Gu
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [49] Infinite Geodesics in the Discrete Heisenberg Group
    Vershik A.M.
    Malyutin A.V.
    Journal of Mathematical Sciences, 2018, 232 (2) : 121 - 128
  • [50] MINIMAL GEODESICS ALONG VOLUME-PRESERVING MAPS, THROUGH SEMIDISCRETE OPTIMAL TRANSPORT
    Merigot, Quentin
    Mirebeau, Jean-Marie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3465 - 3492