On the geometry of geodesics in discrete optimal transport

被引:8
|
作者
Erbar, Matthias [1 ]
Maas, Jan [2 ]
Wirth, Melchior [3 ]
机构
[1] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
HAMILTON-JACOBI EQUATIONS; METRIC-MEASURE-SPACES; RICCI CURVATURE; ENTROPY;
D O I
10.1007/s00526-018-1456-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space of probability measures on a discrete set X, endowed with a dynamical optimal transport metric. Given two probability measures supported in a subset Y. X, it is natural to ask whether they can be connected by a constant speed geodesic with support in Y at all times. Our main result answers this question affirmatively, under a suitable geometric condition on Y introduced in this paper. The proof relies on an extension result for subsolutions to discrete Hamilton-Jacobi equations, which is of independent interest.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Population Games and Discrete Optimal Transport
    Chow, Shui-Nee
    Li, Wuchen
    Lu, Jun
    Zhou, Haomin
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (03) : 871 - 896
  • [22] THE GEOMETRY OF THE SPACE OF NULL GEODESICS
    LOW, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (04) : 809 - 811
  • [23] On the geometry of spaces of oriented geodesics
    Dmitri V. Alekseevsky
    Brendan Guilfoyle
    Wilhelm Klingenberg
    Annals of Global Analysis and Geometry, 2011, 40 : 389 - 409
  • [24] On geodesics in subRiemannian geometry II
    Gaveau, Bernard
    Greiner, Peter
    ANALYSIS AND APPLICATIONS, 2007, 5 (04) : 301 - 412
  • [25] SPACELIKE GEODESICS IN THE NORDSTROM GEOMETRY
    DADHICH, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (07) : 1555 - 1558
  • [26] GEODESICS IN AFFINE DIFFERENTIAL GEOMETRY
    NOMIZU, K
    VRANCKEN, L
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (05) : 749 - 766
  • [27] On the geometry of spaces of oriented geodesics
    Alekseevsky, Dmitri V.
    Guilfoyle, Brendan
    Klingenberg, Wilhelm
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (04) : 389 - 409
  • [28] NOVEL RESULTS IN THE GEOMETRY OF GEODESICS
    BUSEMANN, H
    PHADKE, BB
    ADVANCES IN MATHEMATICS, 1993, 101 (02) : 180 - 219
  • [29] Initialization Procedures for Discrete and Semi-Discrete Optimal Transport
    Meyron, Jocelyn
    COMPUTER-AIDED DESIGN, 2019, 115 : 13 - 22
  • [30] Discrete periodic geodesics in a surface
    Linnér, A
    Renka, R
    EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 145 - 152