On the geometry of geodesics in discrete optimal transport

被引:8
|
作者
Erbar, Matthias [1 ]
Maas, Jan [2 ]
Wirth, Melchior [3 ]
机构
[1] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
HAMILTON-JACOBI EQUATIONS; METRIC-MEASURE-SPACES; RICCI CURVATURE; ENTROPY;
D O I
10.1007/s00526-018-1456-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space of probability measures on a discrete set X, endowed with a dynamical optimal transport metric. Given two probability measures supported in a subset Y. X, it is natural to ask whether they can be connected by a constant speed geodesic with support in Y at all times. Our main result answers this question affirmatively, under a suitable geometric condition on Y introduced in this paper. The proof relies on an extension result for subsolutions to discrete Hamilton-Jacobi equations, which is of independent interest.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On the geometry of geodesics in discrete optimal transport
    Matthias Erbar
    Jan Maas
    Melchior Wirth
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [2] Discrete Optimal Transport: Complexity, Geometry and Applications
    Quentin Mérigot
    Édouard Oudet
    Discrete & Computational Geometry, 2016, 55 : 263 - 283
  • [3] Discrete Optimal Transport: Complexity, Geometry and Applications
    Merigot, Quentin
    Oudet, Edouard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (02) : 263 - 283
  • [4] Quantitative Stability in the Geometry of Semi-discrete Optimal Transport
    Bansil, Mohit
    Kitagawa, Jun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7354 - 7389
  • [5] GEODESICS AS A MECHANICALLY OPTIMAL FIBER GEOMETRY FOR THE LEFT-VENTRICLE
    HOROWITZ, A
    PERL, M
    SIDEMAN, S
    BASIC RESEARCH IN CARDIOLOGY, 1993, 88 : 67 - 74
  • [6] DISCRETE SIZING OF TRUSSES FOR OPTIMAL GEOMETRY
    LIPSON, SL
    GWIN, LB
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1977, 103 (05): : 1031 - 1046
  • [7] Regularized Discrete Optimal Transport
    Ferradans, Sira
    Papadakis, Nicolas
    Peyre, Gabriel
    Aujol, Jean-Francois
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03): : 1853 - 1882
  • [8] Geodesics and the geometry of manifolds
    Hall, Graham
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (01): : 54 - 61
  • [9] ON GEODESICS IN SUBRIEMANNIAN GEOMETRY
    Gaveau, Bernard
    Greiner, Peter
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2006, 1 (01): : 79 - 209
  • [10] Fast Optimal Transport through Sliced Wasserstein Generalized Geodesics
    Mahey, Guillaume
    Chapel, Laetitia
    Gasso, Gilles
    Bonet, Clement
    Courty, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,