Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model

被引:17
|
作者
Karrasch, C. [1 ,2 ,7 ,8 ]
Kennes, D. M. [3 ,4 ]
Heidrich-Meisner, F. [5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Munich, Dept Phys, D-80333 Munich, Germany
[6] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[8] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT;
D O I
10.1103/PhysRevLett.117.116401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [41] Imaging magnetic polarons in the doped Fermi-Hubbard model
    Koepsell, Joannis
    Vijayan, Jayadev
    Sompet, Pimonpan
    Grusdt, Fabian
    Hilker, Timon A.
    Demler, Eugene
    Salomon, Guillaume
    Bloch, Immanuel
    Gross, Christian
    NATURE, 2019, 572 (7769) : 358 - +
  • [42] Fusion for the one-dimensional Hubbard model
    Beisert, Niklas
    de Leeuw, Marius
    Nag, Panchali
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (32)
  • [43] On integrability of the one-dimensional Hubbard model
    Melikyan, A.
    PHYSICS LETTERS B, 2023, 847
  • [44] NOTE ON ONE-DIMENSIONAL HUBBARD MODEL
    CAMP, WJ
    PHYSICAL REVIEW B, 1974, 10 (07) : 2903 - 2906
  • [45] The one-dimensional Hubbard model: a reminiscence
    Lieb, EH
    Wu, FY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 1 - 27
  • [46] Trotter error with commutator scaling for the Fermi-Hubbard model
    Schubert, Ansgar
    Mendl, Christian B.
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [47] Universal thermodynamics of an SU(N) Fermi-Hubbard model
    Ibarra-Garcia-Padilla, Eduardo
    Dasgupta, Sohail
    Wei, Hao-Tian
    Taie, Shintaro
    Takahashi, Yoshiro
    Scalettar, Richard T.
    Hazzard, Kaden R. A.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [48] Dynamical quasicondensation in the weakly interacting Fermi-Hubbard model
    Brezinova, Iva
    Stimpfle, Markus
    Donsa, Stefan
    Rubio, Angel
    PHYSICAL REVIEW B, 2024, 109 (17)
  • [49] Principal component analysis of the magnetic transition in the three-dimensional Fermi-Hubbard model
    Khatami, Ehsan
    XXX IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS, 2019, 1290
  • [50] Topological stripe state in an extended Fermi-Hubbard model
    Julia-Farre, Sergi
    Cardarelli, Lorenzo
    Lewenstein, Maciej
    Miller, Markus
    Dauphin, Alexandre
    PHYSICAL REVIEW B, 2024, 109 (07)