Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model

被引:17
|
作者
Karrasch, C. [1 ,2 ,7 ,8 ]
Kennes, D. M. [3 ,4 ]
Heidrich-Meisner, F. [5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Munich, Dept Phys, D-80333 Munich, Germany
[6] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[8] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT;
D O I
10.1103/PhysRevLett.117.116401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [21] Magnetic correlations in the two-dimensional repulsive Fermi-Hubbard model
    Simkovic, Fedor
    Deng, Youjin
    Prokof'ev, N. V.
    Svistunov, B. V.
    Tupitsyn, I. S.
    Kozik, Evgeny
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [22] Exploring thermal equilibria of the Fermi-Hubbard model with variational quantum algorithms
    Araz, Jack Y.
    Spannowsky, Michael
    Wingate, Matthew
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [23] Doublon dynamics in the extended Fermi-Hubbard model
    Hofmann, Felix
    Potthoff, Michael
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [24] Feshbach modulation spectroscopy of the Fermi-Hubbard model
    Dirks, Andreas
    Mikelsons, Karlis
    Krishnamurthy, H. R.
    Freericks, J. K.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [25] Simple exact solutions of one-dimensional finite-chain hard-core Bose-Hubbard and Fermi-Hubbard models
    Pan, F
    Draayer, JP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (49): : 9095 - 9100
  • [26] Population imbalance in the extended Fermi-Hubbard model
    Dhar, A.
    Kinnunen, J. J.
    Torma, P.
    PHYSICAL REVIEW B, 2016, 94 (07)
  • [27] Lifetime of double occupancies in the Fermi-Hubbard model
    Sensarma, Rajdeep
    Pekker, David
    Altman, Ehud
    Demler, Eugene
    Strohmaier, Niels
    Greif, Daniel
    Joerdens, Robert
    Tarruell, Leticia
    Moritz, Henning
    Esslinger, Tilman
    PHYSICAL REVIEW B, 2010, 82 (22)
  • [28] Quantum Hamiltonian Learning for the Fermi-Hubbard Model
    Ni, Hongkang
    Li, Haoya
    Ying, Lexing
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [29] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Pan, F
    Dai, LR
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (01): : 83 - 88
  • [30] Exact solutions of the high dimensional hard-core Fermi-Hubbard model
    Feng Pan
    Lianrong Dai
    Science in China Series A: Mathematics, 2001, 44 : 83 - 88