Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model

被引:17
|
作者
Karrasch, C. [1 ,2 ,7 ,8 ]
Kennes, D. M. [3 ,4 ]
Heidrich-Meisner, F. [5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Munich, Dept Phys, D-80333 Munich, Germany
[6] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[8] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT;
D O I
10.1103/PhysRevLett.117.116401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Strong quenches in the one-dimensional Fermi-Hubbard model
    Bleicker, Philip
    Uhrig, Goetz S.
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [2] Expansion Dynamics in the One-Dimensional Fermi-Hubbard Model
    Kajala, J.
    Massel, F.
    Toermae, P.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [3] Coherent quench dynamics in the one-dimensional Fermi-Hubbard model
    Iyer, Deepak
    Mondaini, Rubem
    Will, Sebastian
    Rigol, Marcos
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [4] Fast trimers in a one-dimensional extended Fermi-Hubbard model
    Dhar, A.
    Torma, P.
    Kinnunen, J. J.
    [J]. PHYSICAL REVIEW A, 2018, 97 (04)
  • [5] Temporal decay of Neel order in the one-dimensional Fermi-Hubbard model
    Bauer, A.
    Dorfner, F.
    Heidrich-Meisner, F.
    [J]. PHYSICAL REVIEW A, 2015, 91 (05):
  • [6] Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits
    Reiner, Jan-Michael
    Marthaler, Michael
    Braumueller, Jochen
    Weides, Martin
    Schoen, Gerd
    [J]. PHYSICAL REVIEW A, 2016, 94 (03)
  • [7] Hopping Modulation in a One-Dimensional Fermi-Hubbard Hamiltonian
    Massel, Francesco
    Leskinen, Mikko J.
    Torma, Paivi
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [8] Dynamical quantum phase transitions in the one-dimensional extended Fermi-Hubbard model
    Mendoza-Arenas, Juan Jose
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (04):
  • [9] Interaction quantum quenches in the one-dimensional Fermi-Hubbard model with spin imbalance
    Riegger, L.
    Orso, G.
    Heidrich-Meisner, F.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [10] High-temperature transport in the one-dimensional mass-imbalanced Fermi-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    [J]. PHYSICAL REVIEW A, 2024, 109 (06)