Stochastic approach based salient moving object detection using kernel density estimation

被引:0
|
作者
Tang, Peng [1 ]
Liu, Zhifang [1 ]
Gao, Lin [1 ]
Sheng, Peng [1 ]
机构
[1] Sichuan Univ, Inst Image & Graph, Dept Comp Sci, Chengdu 610065, Peoples R China
关键词
video surveillance; moving object detection; kernel density estimation; Monte Carlo simulation;
D O I
10.1117/12.750400
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Background modeling techniques are important for object detection and tracking in video surveillances. Traditional background subtraction approaches are suffered from problems, such as persistent dynamic backgrounds, quick illumination changes, occlusions, noise etc. In this paper, we address the problem of detection and localization of moving objects in a video stream without apperception of background statistics. Three major contributions are presented. First, introducing the sequential Monte Carlo sampling techniques greatly reduce the computation complexity while compromise the expected accuracy. Second, the robust salient motion is considered when resampling the feature points by removing those who do not move in a relative constant velocity and emphasis those in consistent motion. Finally, the proposed joint feature model enforced spatial consistency. Promising results demonstrate the potentials of the proposed algorithm.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] HabitatDyn Dataset: Salient Object Detection to Kinematics Estimation
    Shen, Zhengcheng
    Gao, Yi
    Kaestner, Linh
    Lambrecht, Jens
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS, SSRR, 2023, : 145 - 152
  • [42] Fault Detection in a Multivariate Process Based on Kernel PCA and Kernel Density Estimation
    Samuel, Raphael Tari
    Cao, Yi
    [J]. PROCEEDINGS OF THE 2014 20TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC'14), 2014, : 146 - 151
  • [43] Fault detection in rotating machinery using kernel-based probability density estimation
    Desforges, MJ
    Jacob, PJ
    Ball, AD
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (11) : 1411 - 1426
  • [44] Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression
    Hu, Weiming
    Gao, Jun
    Li, Bing
    Wu, Ou
    Du, Junping
    Maybank, Stephen
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (02) : 218 - 233
  • [45] Distributionally Robust Fault Detection by using Kernel Density Estimation
    Xue, Ting
    Zhong, Maiying
    Luo, Lijia
    Li, Linlin
    Ding, Steven X.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 652 - 657
  • [46] Online Bad Data Detection Using Kernel Density Estimation
    Uddin, Muhammad Sharif
    Kuh, Anthony
    Weng, Yang
    Ilic, Marija
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [47] Moving target detection approach based on spatio-temporal salient perception
    Jin, Gang
    Li, Zhengzhou
    Gu, Yuanshan
    Li, Jialing
    Cao, Dong
    Liu, Linyan
    [J]. OPTIK, 2014, 125 (22): : 6681 - 6686
  • [48] A model for dynamic object segmentation with kernel density estimation based on gradient features
    Li, Zheng
    Jiang, Pohuang
    Ma, Hong
    Yang, Jian
    Tang, DongMing
    [J]. IMAGE AND VISION COMPUTING, 2009, 27 (06) : 817 - 823
  • [49] Moving object segmentation: A block-based moving region detection approach
    Zeng, W
    Huang, QM
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 1, PROCEEDINGS, 2004, 3331 : 280 - 287
  • [50] A Shape Preserving Approach for Salient Object Detection Using Convolutional Neural Networks
    Kim, Jongpil
    Pavlovic, Vladimir
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 609 - 614