Large convex cones in hypercubes

被引:0
|
作者
Furedi, Zoltan [2 ,3 ]
Ruszinko, Miklos [1 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
hypercube; convex cone;
D O I
10.1016/j.dam.2006.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of subsets of [n] is positive linear combination free if the characteristic vector of neither member is the positive linear combination of the characteristic vectors of some other ones. We construct a positive linear combination free family which contains (1 - o(1))2(n) subsets of [n] and we give tight bounds on the o(1)2(n) term. The problem was posed by Ahlswede and Khachatrian [Cone dependence-a basic combinatorial concept, Preprint 00-117, Diskrete Strukturen in der Mathematik SFB 343, Universitat Bielefeld, 2000] and the result has geometric consequences. (C) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1536 / 1541
页数:6
相关论文
共 50 条
  • [41] Gauge Functions for Convex Cones
    Svaiter, B. F.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 851 - 856
  • [42] Simplicial arrangements on convex cones
    Cuntz, M.
    Muehlherr, B.
    Weigel, Ch J.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 147 - 191
  • [43] MINIMAX TESTS FOR CONVEX CONES
    DUMBGEN, L
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (01) : 155 - 165
  • [44] BORNOLOGICAL LOCALLY CONVEX CONES
    Ayaseh, Davood
    Ranjbari, Asghar
    MATEMATICHE, 2014, 69 (02): : 267 - 284
  • [45] A LEMMA ON OPEN CONVEX CONES
    OCHIAI, T
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1966, 12 : 231 - &
  • [46] BIASCENDING ISOMORPHISMS OF CONVEX CONES
    FAKHOURY, H
    MATHEMATISCHE ANNALEN, 1976, 224 (02) : 157 - 160
  • [47] Webbed locally convex cones
    Ayaseh, Davood
    Ranjbari, Asghar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (02): : 149 - 164
  • [48] ON ANGLES BETWEEN CONVEX CONES
    BAUSCHKE H.H.
    Ouyang H.
    Wang X.
    Journal of Applied and Numerical Optimization, 2022, 4 (02): : 131 - 141
  • [49] ORDINATE CONVEX CONES - H-CONES AND BIADJOINTS OF H-CONES
    BOBOC, N
    CORNEA, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (25): : 1679 - &
  • [50] INTERSECTION OF LOCAL CONVEX CONES
    BOLTYANSKII, VG
    DOKLADY AKADEMII NAUK SSSR, 1974, 219 (05): : 1042 - 1044