Large convex cones in hypercubes

被引:0
|
作者
Furedi, Zoltan [2 ,3 ]
Ruszinko, Miklos [1 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1518 Budapest, Hungary
[2] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
hypercube; convex cone;
D O I
10.1016/j.dam.2006.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of subsets of [n] is positive linear combination free if the characteristic vector of neither member is the positive linear combination of the characteristic vectors of some other ones. We construct a positive linear combination free family which contains (1 - o(1))2(n) subsets of [n] and we give tight bounds on the o(1)2(n) term. The problem was posed by Ahlswede and Khachatrian [Cone dependence-a basic combinatorial concept, Preprint 00-117, Diskrete Strukturen in der Mathematik SFB 343, Universitat Bielefeld, 2000] and the result has geometric consequences. (C) 2007 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1536 / 1541
页数:6
相关论文
共 50 条
  • [31] CONSTRUCTION OF HOMOGENEOUS CONVEX CONES
    ROTHAUS, OS
    ANNALS OF MATHEMATICS, 1966, 83 (02) : 358 - &
  • [32] Convex cones in screw spaces
    Zlatanov, D
    Agrawal, S
    Gosselin, CM
    MECHANISM AND MACHINE THEORY, 2005, 40 (06) : 710 - 727
  • [33] Completion of Locally Convex Cones
    Ayaseh, Davood
    Ranjbari, Asghar
    FILOMAT, 2017, 31 (16) : 5073 - 5079
  • [34] AUTOMORPHISMS OF HOMOGENEOUS CONVEX CONES
    VINBERG, EB
    DOKLADY AKADEMII NAUK SSSR, 1962, 143 (02): : 265 - &
  • [35] Normality and nuclearity of convex cones
    El Mounir, Fatimetou mint
    POSITIVITY, 2007, 11 (03) : 485 - 495
  • [36] Geometric Tomography of Convex Cones
    Gabriele Bianchi
    Discrete & Computational Geometry, 2009, 41 : 61 - 76
  • [37] Bifractional inequalities and convex cones
    Niezgoda, M
    DISCRETE MATHEMATICS, 2006, 306 (02) : 231 - 243
  • [38] ON IRREDUCIBILITY OF HOMOGENEOUS CONVEX CONES
    ASANO, H
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1968, 15 : 201 - &
  • [39] Normality and Nuclearity of Convex Cones
    Fatimetou mint El Mounir
    Positivity, 2007, 11 : 485 - 495
  • [40] TRUE SEPARATION OF CONVEX CONES
    BAIR, J
    GWINNER, J
    ARKIV FOR MATEMATIK, 1978, 16 (02): : 207 - 212