Dynamical Complexity and Numerical Bifurcation Analysis of a Reaction-Diffusion Predator-Prey System

被引:0
|
作者
Lajmiri, Z. [1 ]
Orak, I [1 ]
Khoshsiar, R. [2 ]
Azizi, P. [3 ]
机构
[1] Islamic Azad Univ, Izeh Branch, Sama Tech & Vocatinal Training Coll, Izeh, Iran
[2] Shahrekord Univ, Dept Appl Math & Comp Sci, POB 115, Shahrekord, Iran
[3] Shahrekord Univ, Appl Math, POB 115, Shahrekord, Iran
关键词
Andronov-Hopf bifurcation; Bogdanov-Takens bifurcation; Dynamical behavior; Limit cycle;
D O I
10.5890/JAND.2020.06.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a diffusive predator-prey system with modified Holling-Tanner functional response under homogeneous Neumann boundary condition. Dynamics of the system is very sensitive to the variation of the initial conditions. We determine stability and dynamical behaviors of the equilibrium of this system. The dynamical behaviors consist of Andronov-Hopf bifurcation, limit cycles and Bogdanov-Takens bifurcations. Numerical simulation results are given to support our theoretical results. (C) 2020 L&H Scientific Publishing, LLC. All rights reserved.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 50 条
  • [1] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Memoona Mehboob
    Salman Ahmad
    Muhammad Aqeel
    Faizan Ahmed
    Asad Ali
    [J]. The European Physical Journal Plus, 132
  • [2] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Mehboob, Memoona
    Ahmad, Salman
    Aqeel, Muhammad
    Ahmed, Faizan
    Ali, Asad
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (09):
  • [3] Dynamical Analysis of a Delayed Reaction-Diffusion Predator-Prey System
    Zhu, Yanuo
    Cai, Yongli
    Yan, Shuling
    Wang, Weiming
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] Dynamical response of a reaction-diffusion predator-prey system with cooperative hunting and prey refuge
    Han, Renji
    Mandal, Gourav
    Guin, Akshmi Narayan
    Chakravarty, Santabrata
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (10):
  • [5] ANALYSIS OF A REACTION-DIFFUSION SYSTEM MODELING PREDATOR-PREY WITH PREY-TAXIS
    Bendahmane, Mostafa
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2008, 3 (04) : 863 - 879
  • [6] A predator-prey reaction-diffusion system with nonlocal effects
    Gourley, SA
    Britton, NF
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (03) : 297 - 333
  • [7] Persistence of a discrete reaction-diffusion predator-prey system
    Tineo, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (05) : 627 - 634
  • [8] A reaction-diffusion system modeling predator-prey with prey-taxis
    Ainseba, Bedr'Eddine
    Bendahmane, Mostafa
    Noussair, Ahmed
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 2086 - 2105
  • [9] Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay
    Bin, Honghua
    Duan, Daifeng
    Wei, Junjie
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 12194 - 12210
  • [10] Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model
    Meng, Lili
    Han, Yutao
    Lu, Zhiyi
    Zhang, Guang
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019