Dynamical Complexity and Numerical Bifurcation Analysis of a Reaction-Diffusion Predator-Prey System

被引:0
|
作者
Lajmiri, Z. [1 ]
Orak, I [1 ]
Khoshsiar, R. [2 ]
Azizi, P. [3 ]
机构
[1] Islamic Azad Univ, Izeh Branch, Sama Tech & Vocatinal Training Coll, Izeh, Iran
[2] Shahrekord Univ, Dept Appl Math & Comp Sci, POB 115, Shahrekord, Iran
[3] Shahrekord Univ, Appl Math, POB 115, Shahrekord, Iran
关键词
Andronov-Hopf bifurcation; Bogdanov-Takens bifurcation; Dynamical behavior; Limit cycle;
D O I
10.5890/JAND.2020.06.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider a diffusive predator-prey system with modified Holling-Tanner functional response under homogeneous Neumann boundary condition. Dynamics of the system is very sensitive to the variation of the initial conditions. We determine stability and dynamical behaviors of the equilibrium of this system. The dynamical behaviors consist of Andronov-Hopf bifurcation, limit cycles and Bogdanov-Takens bifurcations. Numerical simulation results are given to support our theoretical results. (C) 2020 L&H Scientific Publishing, LLC. All rights reserved.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 50 条
  • [31] On a predator-prey reaction-diffusion model with nonlocal effects
    Han, Bang-Sheng
    Yang, Ying-Hui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 49 - 61
  • [32] Reaction-diffusion predator-prey-parasite system and spatiotemporal complexity
    Chakraborty, Bhaskar
    Ghorai, Santu
    Bairagi, Nandadulal
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [33] ON HOPF BIFURCATION OF A DELAYED PREDATOR-PREY SYSTEM WITH DIFFUSION
    Liu, Jianxin
    Wei, Junjie
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (02):
  • [34] Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects
    Hu, Guang-Ping
    Li, Wan-Tong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 819 - 826
  • [35] Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model
    Li, Xin
    Jiang, Weihua
    Shi, Junping
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (02) : 287 - 306
  • [36] BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY
    Ma, Zhihui
    Tang, Haopeng
    Wang, Shufan
    Wang, Tingting
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 43 - 58
  • [37] Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting
    Guin, Lakshmi Narayan
    Pal, Sudipta
    Chakravarty, Santabrata
    Djilali, Salih
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)
  • [38] Stochastic reaction-diffusion system modeling predator-prey interactions with prey-taxis and noises
    Bendahmane, M.
    Nzeti, H.
    Tagoudjeu, J.
    Zagour, M.
    [J]. CHAOS, 2023, 33 (07)
  • [39] Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis
    He, Xiao
    Zheng, Sining
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 49 : 73 - 77
  • [40] SPATIOTEMPORAL DYNAMICS OF TELEGRAPH REACTION-DIFFUSION PREDATOR-PREY MODELS
    Hernandez-Martinez, Eliseo
    Puebla, Hector
    Perez-Munoz, Teresa
    Gonzalez-Brambila, Margarita
    Velasco-Hernandez, Jorge X.
    [J]. BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2013, : 268 - 281