Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model

被引:3
|
作者
Meng, Lili [1 ]
Han, Yutao [2 ]
Lu, Zhiyi [1 ]
Zhang, Guang [1 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Univ Int Business & Econ, Dept Econ, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
SYSTEM;
D O I
10.1155/2019/9592878
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a discrete predator-prey system with the periodic boundary conditions will be considered. First, we get the conditions for producing Turing instability of the discrete predator-prey system according to the linear stability analysis. Then, we show that the discretemodel has the flip bifurcation and Turing bifurcation under the critical parameter values. Finally, a series of numerical simulations are carried out in the Turing instability region of the discrete predator-prey model; some new Turing patterns such as striped, bar, and horizontal bar are observed.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Pattern formation and spatiotemporal chaos in a reaction-diffusion predator-prey system
    Hu, Guangping
    Li, Xiaoling
    Wang, Yuepeng
    [J]. NONLINEAR DYNAMICS, 2015, 81 (1-2) : 265 - 275
  • [2] Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay
    Liu, Hua
    Ye, Yong
    Wei, Yumei
    Ma, Weiyuan
    Ma, Ming
    Zhang, Kai
    [J]. COMPLEXITY, 2019, 2019
  • [3] Persistence of a discrete reaction-diffusion predator-prey system
    Tineo, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (05) : 627 - 634
  • [4] Delay-driven pattern formation in a reaction-diffusion predator-prey model incorporating a prey refuge
    Lian, Xinze
    Wang, Hailing
    Wang, Weiming
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [5] Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay
    Xu, Jian
    Yang, Gaoxiang
    Xi, Hongguang
    Su, Jianzhong
    [J]. NONLINEAR DYNAMICS, 2015, 81 (04) : 2155 - 2163
  • [6] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Memoona Mehboob
    Salman Ahmad
    Muhammad Aqeel
    Faizan Ahmed
    Asad Ali
    [J]. The European Physical Journal Plus, 132
  • [7] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Mehboob, Memoona
    Ahmad, Salman
    Aqeel, Muhammad
    Ahmed, Faizan
    Ali, Asad
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (09):
  • [8] Bifurcation, chaos and pattern formation in a space- and time-discrete predator-prey system
    Huang, Tousheng
    Zhang, Huayong
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 91 : 92 - 107
  • [9] Global bifurcation and pattern formation for a reaction-diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses
    Luo, Demou
    Wang, Qiru
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [10] On a predator-prey reaction-diffusion model with nonlocal effects
    Han, Bang-Sheng
    Yang, Ying-Hui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 49 - 61