Lane detection in urban environments using models of probability and evidence theory

被引:2
|
作者
Duchow, Christian [1 ]
Friedl, Martin [2 ]
机构
[1] Univ Karlsruhe, Inst Mess & Regelungstech, D-76131 Karlsruhe, Germany
[2] BMW Grp, D-80807 Munich, Germany
关键词
innercity lane detection; bayesian mode; evidence theoretical modeling;
D O I
10.1524/teme.2008.0882
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This contribution describes two approaches to video-based inner-city lane detection. The approaches address the particular challenges of inner-city traffic scenarios by using a probabilistic and evidence-theoretical formulation, respectively, in combination with a flexible lane model. Local orientation and anisotropy in the video image constitute the feature. The probability densities and the mass functions are formulated, fusion strategies discussed and results presented.
引用
收藏
页码:464 / 471
页数:8
相关论文
共 50 条
  • [1] Robust lane detection in urban environments
    Sehestedt, Stephan
    Kodagoda, Sarath
    Alempijevic, Alen
    Dissanayake, Gamini
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 123 - 128
  • [2] Robust monocular lane detection in urban environments
    Felisa, Mirko
    Zani, Paolo
    2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 591 - 596
  • [3] Lane Detection by Trajectory Clustering in Urban Environments
    Chen, Zezhi
    Yan, Yuyao
    Ellis, Tim
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 3076 - 3081
  • [4] Multi-Lane Detection in Urban Driving Environments Using Conditional Random Fields
    Hur, Junhwa
    Kang, Seung-Nam
    Seo, Seung-Woo
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 1297 - 1302
  • [5] Vision-Based Robust Road Lane Detection in Urban Environments
    Beyeler, Michael
    Mirus, Florian
    Verl, Alexander
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 4920 - 4925
  • [6] Lane geometry estimation in urban environments using a stereovision system
    Danescu, R.
    Nedevschi, S.
    Meinecke, M. M.
    To, T. B.
    2007 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE, VOLS 1 AND 2, 2007, : 360 - +
  • [7] Lane Detection by Combining Trajectory Clustering and Curve Complexity Computing in Urban Environments
    Yang, Zhongguo
    Li, Hongqi
    Ali, Sikandar
    Ao, Yile
    Guo, Shuang
    2017 13TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG 2017), 2017, : 240 - 246
  • [8] Prediction of unintentional lane departure using evidence theory
    Polychronopoulos, A
    Koutsimanis, C
    Tsogas, M
    Amditis, A
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 1396 - 1403
  • [9] Lane recognition in urban environment using optimal control theory
    Paetzold, F
    Franke, U
    von Seelen, W
    PROCEEDINGS OF THE IEEE INTELLIGENT VEHICLES SYMPOSIUM 2000, 2000, : 221 - 226
  • [10] Car detection in sequences of images of urban environments using mixture of deformable part models
    Leon, Leissi Castaneda
    Hirata, Roberto, Jr.
    PATTERN RECOGNITION LETTERS, 2014, 39 : 39 - 51