Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation

被引:17
|
作者
Bezerra, Flank D. M. [1 ,2 ]
Carvalho, Alexandre N. [3 ]
Dlotko, Tomasz [4 ]
Nascimento, Marcelo J. D. [5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[5] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractional Schrodinger equation; Subcritical nonlinearity; Fractional powers of operators; GLOBAL ATTRACTOR; CAUCHY-PROBLEM; POWERS;
D O I
10.1016/j.jmaa.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet boundary problem for semilinear fractional Schrodinger equation with subcritical nonlinear term. Local and global in time solvability and regularity properties of solutions are discussed. But our main task is to describe the connections of the fractional equation with the classical nonlinear Schrodinger equation, including convergence of the linear semigroups and continuity of the nonlinear semigroups when the fractional exponent a approaches 1. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 360
页数:25
相关论文
共 50 条
  • [41] Comment on "Fractional quantum mechanics" and "Fractional Schrodinger equation"
    Wei, Yuchuan
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [42] Time and Space Fractional Schrodinger Equation with Fractional Factor
    Xiang, Pei
    Guo, Yong-Xin
    Fu, Jing-Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (01) : 16 - 26
  • [43] Classical aspects of the Pauli-Schrodinger equation
    Dechoum, K
    Franca, HM
    Malta, CP
    PHYSICS LETTERS A, 1998, 248 (2-4) : 93 - 102
  • [44] Classical random processes described by Schrodinger equation
    Rashkovskiy, S. A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2016, 14 (04)
  • [45] Schrodinger's equation and classical Brownian motion
    Ord, GN
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1998, 46 (6-8): : 889 - 896
  • [46] SOLUTION OF SCHRODINGER EQUATION IN TERMS OF CLASSICAL PATHS
    BALIAN, R
    BLOCH, C
    ANNALS OF PHYSICS, 1974, 85 (02) : 514 - 545
  • [47] Bohmian trajectory from the "classical" Schrodinger equation
    Sengupta, Santanu
    Khatua, Munmun
    Chattaraj, Pratim Kumar
    CHAOS, 2014, 24 (04)
  • [48] DEDUCTION OF SCHRODINGER EQUATION FROM CLASSICAL MECHANICS
    SANTOS, E
    ANALES DE FISICA, 1972, 68 (4-6): : 137 - +
  • [49] Modulational instability in fractional nonlinear Schrodinger equation
    Zhang, Lifu
    He, Zenghui
    Conti, Claudio
    Wang, Zhiteng
    Hu, Yonghua
    Lei, Dajun
    Li, Ying
    Fan, Dianyuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 531 - 540
  • [50] Fractional Schrodinger equation and time dependent potentials
    Gabrick, E. C.
    Trobia, J.
    Batista, A. M.
    Lenzi, E. K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 123