Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation

被引:17
|
作者
Bezerra, Flank D. M. [1 ,2 ]
Carvalho, Alexandre N. [3 ]
Dlotko, Tomasz [4 ]
Nascimento, Marcelo J. D. [5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[5] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractional Schrodinger equation; Subcritical nonlinearity; Fractional powers of operators; GLOBAL ATTRACTOR; CAUCHY-PROBLEM; POWERS;
D O I
10.1016/j.jmaa.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet boundary problem for semilinear fractional Schrodinger equation with subcritical nonlinear term. Local and global in time solvability and regularity properties of solutions are discussed. But our main task is to describe the connections of the fractional equation with the classical nonlinear Schrodinger equation, including convergence of the linear semigroups and continuity of the nonlinear semigroups when the fractional exponent a approaches 1. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 360
页数:25
相关论文
共 50 条
  • [21] PT symmetry in a fractional Schrodinger equation
    Zhang, Yiqi
    Zhong, Hua
    Belic, Milivoj R.
    Zhu, Yi
    Zhong, Weiping
    Zhang, Yanpeng
    Christodoulides, Demetrios N.
    Xiao, Min
    LASER & PHOTONICS REVIEWS, 2016, 10 (03) : 526 - 531
  • [22] Fractional differential equations and the Schrodinger equation
    Ben Adda, F
    Cresson, J
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (01) : 323 - 345
  • [23] Fractional Schrodinger equation with noninteger dimensions
    Martins, J.
    Ribeiro, H. V.
    Evangelista, L. R.
    da Silva, L. R.
    Lenzi, E. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2313 - 2319
  • [24] GROUND STATES FOR THE FRACTIONAL SCHRODINGER EQUATION
    Feng, Binhua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [25] The concentration of solutions to a fractional Schrodinger equation
    He, Qihan
    Long, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01):
  • [26] On the Landis conjecture for the fractional Schrodinger equation
    Kow, Pu-Zhao
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (03) : 1023 - 1077
  • [27] On a fractional Schrodinger equation with periodic potential
    Fang, Fei
    Ji, Chao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1517 - 1530
  • [28] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [29] Fractional Schrodinger equation in gravitational optics
    Iomin, Alexander
    MODERN PHYSICS LETTERS A, 2021, 36 (14)
  • [30] On the solution of the fractional nonlinear Schrodinger equation
    Rida, S. Z.
    EI-Sherbiny, H. M.
    Arafa, A. A. M.
    PHYSICS LETTERS A, 2008, 372 (05) : 553 - 558