Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation

被引:17
|
作者
Bezerra, Flank D. M. [1 ,2 ]
Carvalho, Alexandre N. [3 ]
Dlotko, Tomasz [4 ]
Nascimento, Marcelo J. D. [5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[5] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Fractional Schrodinger equation; Subcritical nonlinearity; Fractional powers of operators; GLOBAL ATTRACTOR; CAUCHY-PROBLEM; POWERS;
D O I
10.1016/j.jmaa.2017.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet boundary problem for semilinear fractional Schrodinger equation with subcritical nonlinear term. Local and global in time solvability and regularity properties of solutions are discussed. But our main task is to describe the connections of the fractional equation with the classical nonlinear Schrodinger equation, including convergence of the linear semigroups and continuity of the nonlinear semigroups when the fractional exponent a approaches 1. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:336 / 360
页数:25
相关论文
共 50 条
  • [1] The classical Schrodinger equation
    Mielnik, B
    Reyes, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 6009 - 6025
  • [2] On the Classical Schrodinger Equation
    Benseny, Albert
    Tena, David
    Oriols, Xavier
    FLUCTUATION AND NOISE LETTERS, 2016, 15 (03):
  • [3] Fractional Schrodinger equation
    Laskin, N
    PHYSICAL REVIEW E, 2002, 66 (05): : 7 - 056108
  • [4] ON THE CLASSICAL LIMIT OF THE SCHRODINGER EQUATION
    Bardos, Claude
    Golse, Francois
    Markowich, Peter
    Paul, Thierry
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5689 - 5709
  • [5] Time fractional Schrodinger equation
    Naber, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) : 3339 - 3352
  • [6] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [7] On the nonlocality of the fractional Schrodinger equation
    Jeng, M.
    Xu, S. -L. -Y.
    Hawkins, E.
    Schwarz, J. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [8] Multidimensional Fractional Schrodinger equation
    Rodrigues, M. M.
    Vieira, N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 798 - 804
  • [9] Fractional Schrodinger equation in optics
    Longhi, Stefano
    OPTICS LETTERS, 2015, 40 (06) : 1117 - 1120
  • [10] Discrete Fractional Solutions of the Radial Equation of the Fractional Schrodinger Equation
    Yilmazer, Resat
    Ozturk, Okkes
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863