Confinement and Integration Density of Plasmonic Waveguides

被引:12
|
作者
Sun, X. [1 ]
Alam, M. Z. [1 ]
Mojahedi, M. [1 ]
Aitchison, J. S. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Photonic integrated circuits; plasmonic wave-guide; propagation losses; mode confinement; SURFACE-PLASMON; MODES; OPTIMIZATION; RESONANCE; OPTICS; LIGHT; SLOT;
D O I
10.1109/JSTQE.2014.2377636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In general, plasmonic waveguides exhibit a tradeoff between propagation loss and mode confinement-the smaller the mode size, the higher the propagation loss. We compare the confinement and loss of three commonly used plasmonic waveguides. We define two distinct figures of merit based on application for which the plasmonic waveguide is designed: 1) applications which require high power density and 2) applications which require high lateral packing density. The first figure of merit is based on the power density and propagation loss, whereas the second depends on the coupling length and the propagation loss. We have identified the relative advantages and limitations of the plasmonic waveguides for these different applications.
引用
收藏
页码:268 / 275
页数:8
相关论文
共 50 条
  • [41] Plasmonic nanoparticle interaction in hybrid plasmonic-dielectric waveguides
    Kaiser, Thomas
    Diziain, Severine
    Helgert, Christian
    Rockstuhl, Carsten
    Pertsch, Thomas
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [42] Partial confinement photonic crystal waveguides
    Saini, S.
    Hong, C. -Y.
    Pfaff, N.
    Kimerling, L. C.
    Michel, J.
    APPLIED PHYSICS LETTERS, 2008, 93 (26)
  • [43] Confinement and modal gain in dielectric waveguides
    Visser, TD
    Demeulenaere, B
    Haes, J
    Lenstra, D
    Baets, R
    Blok, H
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1996, 14 (05) : 885 - 887
  • [44] Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform
    Sederberg, S.
    Van, V.
    Elezzabi, A. Y.
    APPLIED PHYSICS LETTERS, 2010, 96 (12)
  • [45] Terahertz Generation in Nonlinear Plasmonic Waveguides
    Qasymeh, Montasir
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2016, 52 (04)
  • [46] Nonlinear Nanofocusing in Tapered Plasmonic Waveguides
    Davoyan, Arthur R.
    Shadrivov, Ilya V.
    Zharov, Alexander A.
    Gramotnev, Dmitri K.
    Kivshar, Yuri S.
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [47] Optical gain seen in plasmonic waveguides
    Gather, Malte C.
    LASER FOCUS WORLD, 2010, 46 (07): : 11 - 11
  • [48] Metal-oxide-silicon nanophotonics: an efficient integration of plasmonic nano-slots with silicon waveguides
    Delacour, Cecile
    Grosse, Philippe
    Fedeli, Jean Marc
    Chelnokov, Alexei
    Blaize, Sylvain
    Bruyant, Aurelien
    Salas-Montiel, Rafael
    Lerondel, Gilles
    2010 7TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2010, : 34 - 36
  • [49] Integration of Single-Photon Emitters in 2D Materials with Plasmonic Waveguides at Room Temperature
    Jeong, Kwang-Yong
    Lee, Seong Won
    Choi, Jae-Hyuck
    So, Jae-Pil
    Park, Hong-Gyu
    NANOMATERIALS, 2020, 10 (09) : 1 - 9
  • [50] Forerunners and Turbulent Propagation in Plasmonic Waveguides
    Rosenblatt, Gilad
    Feigenbaum, Eyal
    Orenstein, Meir
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2433 - 2434