Confinement and Integration Density of Plasmonic Waveguides

被引:12
|
作者
Sun, X. [1 ]
Alam, M. Z. [1 ]
Mojahedi, M. [1 ]
Aitchison, J. S. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Photonic integrated circuits; plasmonic wave-guide; propagation losses; mode confinement; SURFACE-PLASMON; MODES; OPTIMIZATION; RESONANCE; OPTICS; LIGHT; SLOT;
D O I
10.1109/JSTQE.2014.2377636
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In general, plasmonic waveguides exhibit a tradeoff between propagation loss and mode confinement-the smaller the mode size, the higher the propagation loss. We compare the confinement and loss of three commonly used plasmonic waveguides. We define two distinct figures of merit based on application for which the plasmonic waveguide is designed: 1) applications which require high power density and 2) applications which require high lateral packing density. The first figure of merit is based on the power density and propagation loss, whereas the second depends on the coupling length and the propagation loss. We have identified the relative advantages and limitations of the plasmonic waveguides for these different applications.
引用
收藏
页码:268 / 275
页数:8
相关论文
共 50 条
  • [21] Plasmonic crystal waveguides
    Slobodan M. Vuković
    Zoran Jakšić
    Ilya V. Shadrivov
    Yuri S. Kivshar
    Applied Physics A, 2011, 103 : 615 - 617
  • [22] Plasmonic crystal waveguides
    Vukovic, Slobodan M.
    Jaksic, Zoran
    Shadrivov, Ilya V.
    Kivshar, Yuri S.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (03): : 615 - 617
  • [23] Sodium-based plasmonic waveguides with high confinement factors and ultra-low gain thresholds
    Liu, Huijuan
    Liu, Yuying
    Teng, Da
    OPTICS LETTERS, 2024, 49 (20) : 5850 - 5853
  • [24] Integration of Plasmonic Structures in Photonic Waveguides Enables Novel Electromagnetic Functionalities in Photonic Circuits
    Magno, Giovanni
    Yam, Vy
    Dagens, Beatrice
    Lavrinenko, Andrei
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [25] Microwave Plasmonic Waveguides and Devices
    Ma, Hui Feng
    Wang, Meng
    Zhang, Hao Chi
    2018 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 2018 IEEE ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC/APEMC), 2018, : 161 - 161
  • [26] Periodically structured plasmonic waveguides
    Saj, W. M.
    Foteinopoulou, S.
    Kafesaki, M.
    Soukoulis, C. M.
    Economou, E. N.
    METAMATERIALS III, 2008, 6987
  • [27] Photorefractive Effect in Plasmonic Waveguides
    Qasymeh, Montasir
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2014, 50 (05) : 327 - 333
  • [28] Nonlinear plasmonic slot waveguides
    Davoyan, Arthur R.
    Shadrivov, Ilya V.
    Kivshar, Yuri S.
    OPTICS EXPRESS, 2008, 16 (26) : 21209 - 21214
  • [29] PHOTONIC BANDGAP PLASMONIC WAVEGUIDES
    Markov, Andrey
    Reinhardt, Carsten
    Ung, Bora
    Evlyukhin, Andrey B.
    Cheng, Wei
    Chichkov, Boris N.
    Skorobogatiy, Maksim
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [30] Comparison of Waveguiding Properties of Plasmonic Voids and Plasmonic Waveguides
    Alu, Andrea
    Engheta, Nader
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (16): : 7462 - 7471