Polyhedral Voronoi diagrams of polyhedra in three dimensions

被引:7
|
作者
Koltun, V [1 ]
Sharir, M
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00454-003-2950-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the complexity of the Voronoi diagram,of a collection of disjoint polyhedra in general position in 3-space that have n vertices overall, under a convex distance function induced by a polyhedron with O(1) facets, is O(n(2+epsilon)), for any epsilon > 0. We also show that when the sites are n segments in 3-space, this complexity is 0(n 2 ot (n) log n). This generalizes previous results by Chew et al. [10] and by Aronov and Sharir [4], and solves an open problem put forward by Agarwal and Shatir [2]. Specific distance functions for which our results hold are the L-1 and L-infinity metrics. These results imply that we can preprocess a collection of polyhedra as above into a near-quadratic data structure that can answer delta-approximate Euclidean nearest-neighbor queries amidst the polyhedra in time O(log(n/delta)), for an arbitrarily small delta > 0.
引用
收藏
页码:83 / 124
页数:42
相关论文
共 50 条
  • [31] SIMPLIFIED VORONOI DIAGRAMS
    CANNY, J
    DONALD, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 219 - 236
  • [32] Voronoi Diagrams on orbifolds
    Dpto. Matemáticas, Estadística y Comp., Universidad de Cantabria, Santander 39071, Spain
    Comput Geom Theory Appl, 5 (219-230):
  • [33] Bregman Voronoi Diagrams
    Boissonnat, Jean-Daniel
    Nielsen, Frank
    Nock, Richard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 281 - 307
  • [34] Voronoi diagrams on the sphere
    Na, HS
    Lee, CN
    Cheong, O
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 183 - 194
  • [35] Recursive Voronoi diagrams
    Boots, B
    Shiode, N
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2003, 30 (01): : 113 - 124
  • [36] Voronoi Diagrams on orbifolds
    Mazon, M
    Recio, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1997, 8 (05): : 219 - 230
  • [37] On Bregman Voronoi Diagrams
    Nielsen, Frank
    Boissonnat, Jean-Daniel
    Nock, Richard
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 746 - +
  • [38] VORONOI DIAGRAMS IN A RIVER
    Sugihara, Kokichi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (01) : 29 - 48
  • [39] REPRESENTATION OF PROPERTIES OF MATERIALS BY VORONOI POLYHEDRA
    KRISHNAMURTHY, V
    BROSTOW, W
    SOCHANSKI, JS
    MATERIALS CHEMISTRY AND PHYSICS, 1988, 20 (4-5) : 451 - 469