Polyhedral Voronoi diagrams of polyhedra in three dimensions

被引:7
|
作者
Koltun, V [1 ]
Sharir, M
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00454-003-2950-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the complexity of the Voronoi diagram,of a collection of disjoint polyhedra in general position in 3-space that have n vertices overall, under a convex distance function induced by a polyhedron with O(1) facets, is O(n(2+epsilon)), for any epsilon > 0. We also show that when the sites are n segments in 3-space, this complexity is 0(n 2 ot (n) log n). This generalizes previous results by Chew et al. [10] and by Aronov and Sharir [4], and solves an open problem put forward by Agarwal and Shatir [2]. Specific distance functions for which our results hold are the L-1 and L-infinity metrics. These results imply that we can preprocess a collection of polyhedra as above into a near-quadratic data structure that can answer delta-approximate Euclidean nearest-neighbor queries amidst the polyhedra in time O(log(n/delta)), for an arbitrarily small delta > 0.
引用
收藏
页码:83 / 124
页数:42
相关论文
共 50 条
  • [21] VORONOI POLYHEDRA AND CLUSTER RECOGNITION
    DAVID, EE
    DAVID, CW
    JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (06): : 3288 - 3289
  • [22] Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra
    Seeger, Andreas
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 145 - 151
  • [23] Discrete Voronoi games and ε-nets, in two and three dimensions
    Banik, Aritra
    De Carufel, Jean-Lou
    Maheshwari, Anil
    Smid, Michiel
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 55 : 41 - 58
  • [24] Incremental Voronoi Diagrams
    Allen, Sarah R.
    Barba, Luis
    Iacono, John
    Langerman, Stefan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 822 - 848
  • [25] Incremental Voronoi Diagrams
    Sarah R. Allen
    Luis Barba
    John Iacono
    Stefan Langerman
    Discrete & Computational Geometry, 2017, 58 : 822 - 848
  • [26] VORONOI DIAGRAMS AND ARRANGEMENTS
    EDELSBRUNNER, H
    SEIDEL, R
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) : 25 - 44
  • [27] Skew Voronoi diagrams
    Aichholzer, O
    Aurenhammer, F
    Chen, DZ
    Lee, DT
    Papadopoulou, E
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (03) : 235 - 247
  • [28] DYNAMIC VORONOI DIAGRAMS
    GOWDA, IG
    KIRKPATRICK, DG
    LEE, DT
    NAAMAD, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (05) : 724 - 731
  • [29] Semi Voronoi Diagrams
    Cheng, Yongxi
    Li, Bo
    Xu, Yinfeng
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 19 - +
  • [30] Bregman Voronoi Diagrams
    Jean-Daniel Boissonnat
    Frank Nielsen
    Richard Nock
    Discrete & Computational Geometry, 2010, 44 : 281 - 307