Perturbative Terms of Kac-Moody-Eisenstein Series

被引:0
|
作者
Fleig, Philipp [1 ]
Kleinschmidt, Axel [2 ,3 ]
机构
[1] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, DE-14476 Potsdam, Germany
[3] ULB, Int Solvay Inst, BE-1050 Brussels, Belgium
来源
STRING-MATH 2012 | 2015年 / 90卷
关键词
STRING THEORY; DUALITY;
D O I
10.1090/pspum/090/01526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Supersymmetric theories of gravity can exhibit surprising hidden symmetries when considered on manifolds that include a torus. When the torus is of large dimension these symmetries can become infinite-dimensional and of Kac-Moody type. When taking quantum effects into account the symmetries become discrete and invariant functions under these symmetries should play an important role in quantum gravity. The new results here concern surprising simplifications in the constant terms of very particular Eisenstein series on these Kac-Moody groups. These are exactly the cases that are expected to arise in string theory.
引用
收藏
页码:265 / 275
页数:11
相关论文
共 50 条
  • [1] On the convergence of Kac-Moody Eisenstein series
    Carbone, Lisa
    Garland, Howard
    Lee, Kyu-Hwan
    Liu, Dongwen
    Miller, Stephen D.
    AMERICAN JOURNAL OF MATHEMATICS, 2024, 146 (05)
  • [2] Eisenstein series on rank 2 hyperbolic Kac–Moody groups
    Lisa Carbone
    Kyu-Hwan Lee
    Dongwen Liu
    Mathematische Annalen, 2017, 367 : 1173 - 1197
  • [3] Convergence of Kac–Moody Eisenstein series over a function fieldConvergence of Kac–Moody Eisenstein...K.-H. Lee et al.
    Kyu-Hwan Lee
    Dongwen Liu
    Thomas Oliver
    Selecta Mathematica, 2025, 31 (2)
  • [4] Eisenstein series on rank 2 hyperbolic Kac-Moody groups
    Carbone, Lisa
    Lee, Kyu-Hwan
    Liu, Dongwen
    MATHEMATISCHE ANNALEN, 2017, 367 (3-4) : 1173 - 1197
  • [5] Entirety of certain cuspidal Eisenstein series on Kac-Moody groups
    Carbone, Lisa
    Lee, Kyu-Hwan
    Liu, Dongwen
    ALGEBRA & NUMBER THEORY, 2022, 16 (05) : 1098 - 1119
  • [6] Fourier expansions of Kac-Moody Eisenstein series and degenerate Whittaker vectors
    Fleig, Philipp
    Kleinschmidt, Axel
    Persson, Daniel
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2014, 8 (01) : 41 - 100
  • [7] EISENSTEIN SERIES ON AFFINE KAC-MOODY GROUPS OVER FUNCTION FIELDS
    Lee, Kyu-Hwan
    Lombardo, Philip
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (04) : 2121 - 2165
  • [8] Kac-Moody algebras in perturbative string theory
    Gaberdiel, MR
    West, PC
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (08):
  • [9] On constant terms of Eisenstein series
    Dasgupta, Samit
    Kakde, Mahesh
    ACTA ARITHMETICA, 2021, 200 (02) : 119 - 147
  • [10] KAC-MOODY-MALCEV AND SUPER-KAC-MOODY-MALCEV ALGEBRAS
    OSIPOV, EP
    PHYSICS LETTERS B, 1992, 274 (3-4) : 341 - 344