Bypassing the mathematical complexity of equation-oriented approaches in predicting the performance of chemical reactors has recently stimulated a significant amount of interest. Among chemical reactors, circulating fluidized bed reactors (CFBRs) have secured an important role in a broad range of applications in energy sectors due to their advantages, including high fluid-solid contact efficiency, uniform temperature, and enhanced heat and mass transfer rates. Accordingly, modelling and predicting the performance of these reactors is of great importance. In this study, a sequence-based model was developed to predict the behaviour of CFBRs. Complex phenomena in CFBRs were mimicked by two sub-models, namely the hydrodynamics module, which addressed the physical changes, and the reaction kinetics module, which described the chemical evolution of species. The performance of the proposed model was validated with a library of catalytic ozone decomposition experimental data in CFBRs. This work introduces a new infrastructure for modelling CFBRs, which may be combined with the current process simulation software, such as Aspen Plus (c), for advanced process modelling applications.