Where post-Newtonian and numerical-relativity waveforms meet

被引:122
|
作者
Hannam, Mark [1 ]
Husa, Sascha [1 ]
Gonzalez, Jose A. [1 ,2 ]
Sperhake, Ulrich [1 ]
Bruegmann, Bernd [1 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[2] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 04期
关键词
D O I
10.1103/PhysRevD.77.044020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze numerical-relativity (NR) waveforms that cover nine orbits (18 gravitational-wave cycles) before merger of an equal-mass system with low eccentricity, with numerical uncertainties of 0.25 radians in the phase and 2% in the amplitude; such accuracy allows a direct comparison with post-Newtonian (PN) waveforms. We focus on waveforms predicted by one of the PN approximants that has been proposed for use in gravitational-wave data analysis, restricted 3.5PN TaylorT1, and compare these with a section of the numerical waveform from the second to the eighth orbit, which is about one and a half orbits before merger. This corresponds to a gravitational-wave frequency range of M omega=0.0455 to 0.1 Depending on the method of matching PN and NR waveforms, the accumulated phase disagreement over this frequency range can be within numerical uncertainty. Similar results are found in comparisons with an alternative PN approximant, 3PN TaylorT3. The amplitude disagreement, on the other hand, is around 6%, but roughly constant for all 13 cycles that are compared, suggesting that for the purpose of producing "hybrid waveforms," only 4.5 orbits need be simulated to match PN and NR waves with the same accuracy as is possible with nine orbits. If, however, we model the amplitude up to 2.5PN order, numerical and post-Newtonian amplitude disagreement is close to the numerical error of 2%.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors
    MacDonald, Ilana
    Nissanke, Samaya
    Pfeiffer, Harald P.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (13)
  • [2] Consistency of post-Newtonian waveforms with numerical relativity
    Baker, John G.
    van Meter, James R.
    McWilliams, Sean T.
    Centrella, Joan
    Kelly, Bernard J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [3] Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case
    Hannam, Mark
    Husa, Sascha
    Bruegmann, Bernd
    Gopakumar, Achamveedu
    [J]. PHYSICAL REVIEW D, 2008, 78 (10):
  • [4] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
  • [5] Accuracy of numerical relativity waveforms from binary neutron star mergers and their comparison with post-Newtonian waveforms
    Bernuzzi, Sebastiano
    Thierfelder, Marcus
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2012, 85 (10):
  • [6] Length requirements for numerical-relativity waveforms
    Hannam, Mark
    Husa, Sascha
    Ohme, Frank
    Ajith, P.
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):
  • [7] POST-NEWTONIAN HYDRODYNAMICS AND POST-NEWTONIAN GRAVITATIONAL-WAVE GENERATION FOR NUMERICAL RELATIVITY
    BLANCHET, L
    DAMOUR, T
    SCHAFER, G
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1990, 242 (02) : 289 - 305
  • [8] Post-Newtonian quasicircular initial orbits for numerical relativity
    Healy, James
    Lousto, Carlos O.
    Nakano, Hiroyuki
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
  • [9] Comparing post-Newtonian and numerical relativity precession dynamics
    Ossokine, Serguei
    Boyle, Michael
    Kidder, Lawrence E.
    Pfeiffer, Harald P.
    Scheel, Mark A.
    Szilagyi, Bela
    [J]. PHYSICAL REVIEW D, 2015, 92 (10)
  • [10] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries (vol 29, 124001, 2012)
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (19)