The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries

被引:100
|
作者
Ajith, P. [1 ]
Boyle, Michael [2 ]
Brown, Duncan A. [3 ]
Bruegmann, Bernd [4 ]
Buchman, Luisa T.
Cadonati, Laura [5 ]
Campanelli, Manuela [6 ,7 ]
Chu, Tony [8 ]
Etienne, Zachariah B. [9 ]
Fairhurst, Stephen [10 ]
Hannam, Mark [10 ]
Healy, James [11 ,12 ]
Hinder, Ian [13 ]
Husa, Sascha [14 ]
Kidder, Lawrence E. [2 ]
Krishnan, Badri [15 ]
Laguna, Pablo [11 ,12 ]
Liu, Yuk Tung [9 ]
London, Lionel [11 ,12 ]
Lousto, Carlos O. [6 ,7 ]
Lovelace, Geoffrey [2 ]
MacDonald, Ilana [8 ]
Marronetti, Pedro [16 ]
Mohapatra, Satya [5 ]
Moesta, Philipp [13 ]
Mueller, Doreen [4 ]
Mundim, Bruno C. [6 ,7 ]
Nakano, Hiroyuki [6 ,7 ]
Ohme, Frank [13 ]
Paschalidis, Vasileios [9 ]
Pekowsky, Larne [3 ,11 ,12 ]
Pollney, Denis [14 ]
Pfeiffer, Harald P. [8 ]
Ponce, Marcelo [6 ,7 ]
Puerrer, Michael [17 ]
Reifenberger, George [16 ]
Reisswig, Christian
Santamaria, Lucia [1 ]
Scheel, Mark A.
Shapiro, Stuart L. [9 ]
Shoemaker, Deirdre [11 ,12 ]
Sopuerta, Carlos F. [18 ]
Sperhake, Ulrich [18 ,19 ,20 ]
Szilagyi, Bela
Taylor, Nicholas W.
Tichy, Wolfgang [16 ]
Tsatsin, Petr [16 ]
Zlochower, Yosef [6 ,7 ]
机构
[1] CALTECH, LIGO, Pasadena, CA 91125 USA
[2] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
[3] Syracuse Univ, Dept Phys, Syracuse, NY 13254 USA
[4] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[5] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[6] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[7] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[8] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[9] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[10] Cardiff Univ, Sch Phys & Astron, Cardiff, S Glam, Wales
[11] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA
[12] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[13] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[14] Univ Illes Balears, Dept Fis, E-07122 Palma De Mallorca, Spain
[15] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
[16] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
[17] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[18] CSIC IEEC, Inst Ciencies Espai, Barcelona 08193, Spain
[19] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
[20] Inst Super Tecn, Dept Fis, CENTRA, P-1049001 Lisbon, Portugal
基金
美国国家科学基金会; 英国科学技术设施理事会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会; 奥地利科学基金会;
关键词
NUMERICAL RELATIVITY; GRAVITATIONAL-WAVES; INITIAL DATA; MASS-DISTRIBUTION; EVOLUTIONS; RADIATION; MERGERS;
D O I
10.1088/0264-9381/29/12/124001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The numerical injection analysis (NINJA) project is a collaborative effort between members of the numerical-relativity and gravitational wave data-analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms and to foster closer collaboration between the numerical-relativity and data-analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian-numerical-relativity hybrid waveforms, large numbers of injections and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical-relativity groups have contributed 56 hybrid waveforms consisting of a numerical portion modeling the late inspiral, merger and ringdown stitched to a post-Newtonian portion modeling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the (l, m) = ( 2, 2) mode. Based on these studies, we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations.
引用
收藏
页数:27
相关论文
共 23 条
  • [1] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries (vol 29, 124001, 2012)
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (19)
  • [2] Comparison of numerical and post-Newtonian waveforms for generic precessing black-hole binaries
    Campanelli, Manuela
    Lousto, Carlos O.
    Nakano, Hiroyuki
    Zlochower, Yosef
    [J]. PHYSICAL REVIEW D, 2009, 79 (08):
  • [3] Where post-Newtonian and numerical-relativity waveforms meet
    Hannam, Mark
    Husa, Sascha
    Gonzalez, Jose A.
    Sperhake, Ulrich
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [4] Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors
    MacDonald, Ilana
    Nissanke, Samaya
    Pfeiffer, Harald P.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (13)
  • [5] Catalog of precessing black-hole-binary numerical-relativity simulations
    Hamilton, Eleanor
    Fauchon-Jones, Edward
    Hannam, Mark
    Hoy, Charlie
    Kalaghatgi, Chinmay
    London, Lionel
    Thompson, Jonathan E.
    Yeeles, Dave
    Ghosh, Shrobana
    Khan, Sebastian
    Kolitsidou, Panagiota
    Vano-Vinuales, Alex
    [J]. PHYSICAL REVIEW D, 2024, 109 (04)
  • [6] Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries
    Pan, Yi
    Buonanno, Alessandra
    Fujita, Ryuichi
    Racine, Etienne
    Tagoshi, Hideyuki
    [J]. PHYSICAL REVIEW D, 2011, 83 (06):
  • [7] Black-hole perturbation theory with post-Newtonian theory: Towards hybrid waveforms for neutron-star binaries
    Feng, Xuefeng
    Lyu, Zhenwei
    Yang, Huan
    [J]. PHYSICAL REVIEW D, 2022, 105 (10)
  • [8] Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries
    Santamaria, L.
    Ohme, F.
    Ajith, P.
    Bruegmann, B.
    Dorband, N.
    Hannam, M.
    Husa, S.
    Moesta, P.
    Pollney, D.
    Reisswig, C.
    Robinson, E. L.
    Seiler, J.
    Krishnan, B.
    [J]. PHYSICAL REVIEW D, 2010, 82 (06):
  • [9] Inferring black-hole orbital dynamics from numerical-relativity gravitational waveforms
    Hamilton, Eleanor
    Hannam, Mark
    [J]. PHYSICAL REVIEW D, 2018, 98 (08)
  • [10] Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case
    Hannam, Mark
    Husa, Sascha
    Bruegmann, Bernd
    Gopakumar, Achamveedu
    [J]. PHYSICAL REVIEW D, 2008, 78 (10):