Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors

被引:57
|
作者
MacDonald, Ilana [1 ]
Nissanke, Samaya [1 ,2 ,3 ]
Pfeiffer, Harald P. [1 ]
机构
[1] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] CALTECH, Pasadena, CA 91125 USA
关键词
BINARIES;
D O I
10.1088/0264-9381/28/13/134002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such 'hybrid waveforms'. We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to less than or similar to 0.1 rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor approximants. Using our error criterion, even at 3.5th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Where post-Newtonian and numerical-relativity waveforms meet
    Hannam, Mark
    Husa, Sascha
    Gonzalez, Jose A.
    Sperhake, Ulrich
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2008, 77 (04):
  • [2] POST-NEWTONIAN HYDRODYNAMICS AND POST-NEWTONIAN GRAVITATIONAL-WAVE GENERATION FOR NUMERICAL RELATIVITY
    BLANCHET, L
    DAMOUR, T
    SCHAFER, G
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1990, 242 (02) : 289 - 305
  • [3] Consistency of post-Newtonian waveforms with numerical relativity
    Baker, John G.
    van Meter, James R.
    McWilliams, Sean T.
    Centrella, Joan
    Kelly, Bernard J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [4] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
  • [5] Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case
    Hannam, Mark
    Husa, Sascha
    Bruegmann, Bernd
    Gopakumar, Achamveedu
    [J]. PHYSICAL REVIEW D, 2008, 78 (10):
  • [6] Accuracy of numerical relativity waveforms from binary neutron star mergers and their comparison with post-Newtonian waveforms
    Bernuzzi, Sebastiano
    Thierfelder, Marcus
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2012, 85 (10):
  • [7] Length requirements for numerical-relativity waveforms
    Hannam, Mark
    Husa, Sascha
    Ohme, Frank
    Ajith, P.
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):
  • [8] The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries (vol 29, 124001, 2012)
    Ajith, P.
    Boyle, Michael
    Brown, Duncan A.
    Bruegmann, Bernd
    Buchman, Luisa T.
    Cadonati, Laura
    Campanelli, Manuela
    Chu, Tony
    Etienne, Zachariah B.
    Fairhurst, Stephen
    Hannam, Mark
    Healy, James
    Hinder, Ian
    Husa, Sascha
    Kidder, Lawrence E.
    Krishnan, Badri
    Laguna, Pablo
    Liu, Yuk Tung
    London, Lionel
    Lousto, Carlos O.
    Lovelace, Geoffrey
    MacDonald, Ilana
    Marronetti, Pedro
    Mohapatra, Satya
    Moesta, Philipp
    Mueller, Doreen
    Mundim, Bruno C.
    Nakano, Hiroyuki
    Ohme, Frank
    Paschalidis, Vasileios
    Pekowsky, Larne
    Pollney, Denis
    Pfeiffer, Harald P.
    Ponce, Marcelo
    Puerrer, Michael
    Reifenberger, George
    Reisswig, Christian
    Santamaria, Lucia
    Scheel, Mark A.
    Shapiro, Stuart L.
    Shoemaker, Deirdre
    Sopuerta, Carlos F.
    Sperhake, Ulrich
    Szilagyi, Bela
    Taylor, Nicholas W.
    Tichy, Wolfgang
    Tsatsin, Petr
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (19)
  • [9] Post-Newtonian quasicircular initial orbits for numerical relativity
    Healy, James
    Lousto, Carlos O.
    Nakano, Hiroyuki
    Zlochower, Yosef
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
  • [10] Accuracy of numerical relativity waveforms with respect to space-based gravitational wave detectors
    Wang, Zun
    Zhao, Junjie
    Cao, Zhoujian
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (01)