Symmetry Reduction of Two-Dimensional Damped Kuramoto-Sivashinsky Equation

被引:16
|
作者
Nadjafikhah, Mehdi [1 ]
Ahangari, Fatemeh [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 1684613114, Iran
关键词
two-dimensional damped Kuramoto-Sivashinsky equation; symmetry; optimal system; similarity solutions;
D O I
10.1088/0253-6102/56/2/03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((2D) DKS) equation is studied. By applying the basic Lie symmetry method for the (2D) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassical symmetries of the (2D) DKS equation are also investigated.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [41] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13
  • [42] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [43] Computational study of the Kuramoto-Sivashinsky equation
    Smyrlis, YS
    Papageorgiou, DT
    ADVANCES IN MULTI-FLUID FLOWS, 1996, : 426 - 432
  • [44] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [45] A note on the Kuramoto-Sivashinsky equation with discontinuity
    D'Ambrosio, Lorenzo
    Gallo, Marco
    Pugliese, Alessandro
    MATHEMATICS IN ENGINEERING, 2021, 3 (05):
  • [46] Scaling properties of the Kuramoto-Sivashinsky equation
    Li, J
    Sander, LM
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 507 - 514
  • [47] Generalized solutions to the Kuramoto-Sivashinsky equation
    Biagioni, HA
    Iorio, RJ
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 1 - 8
  • [48] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, B
    PHYSICS LETTERS A, 1999, 263 (4-6) : 338 - 340
  • [49] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13
  • [50] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    NONLINEARITY, 2015, 28 (04) : 1103 - 1133