Symmetry Reduction of Two-Dimensional Damped Kuramoto-Sivashinsky Equation

被引:16
|
作者
Nadjafikhah, Mehdi [1 ]
Ahangari, Fatemeh [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 1684613114, Iran
关键词
two-dimensional damped Kuramoto-Sivashinsky equation; symmetry; optimal system; similarity solutions;
D O I
10.1088/0253-6102/56/2/03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((2D) DKS) equation is studied. By applying the basic Lie symmetry method for the (2D) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassical symmetries of the (2D) DKS equation are also investigated.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [31] Feedback control of the Kuramoto-Sivashinsky equation
    Christofides, PD
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4646 - 4651
  • [32] OSCILLATIONS OF SOLUTIONS OF THE KURAMOTO-SIVASHINSKY EQUATION
    KUKAVICA, I
    PHYSICA D, 1994, 76 (04): : 369 - 374
  • [33] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [34] High-dimensional chaotic saddles in the Kuramoto-Sivashinsky equation
    Rempel, EL
    Chian, ACL
    PHYSICS LETTERS A, 2003, 319 (1-2) : 104 - 109
  • [35] A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation
    Schmuck, M.
    Pradas, M.
    Pavliotis, G. A.
    Kalliadasis, S.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (02) : 273 - 301
  • [36] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    FOIAS, C
    NICOLAENKO, B
    SELL, GR
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 285 - 288
  • [37] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [38] High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
    Chian, ACL
    Rempel, EL
    Macau, EE
    Rosa, RR
    Christiansen, F
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 035203
  • [39] A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation
    Kalliadasis, S. (s.kalliadasis@imperial.ac.uk), 1600, Oxford University Press (80):
  • [40] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163