Cross-View Gait Recognition Based on Dual-Stream Network

被引:4
|
作者
Zhao, Xiaoyan [1 ,2 ]
Zhang, Wenjing [1 ]
Zhang, Tianyao [1 ,3 ]
Zhang, Zhaohui [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Shunde Grad Sch, Fo Shan 528399, Peoples R China
[3] Univ Sci & Technol Beijing, Beijing Engn Res Ctr Ind Spectrum Imaging, 30 Xueyuan Rd, Beijing 100083, Peoples R China
关键词
gait recognition; image sequences; gait silhouette; gait energy image; neural networks;
D O I
10.20965/jaciii.2021.p0671
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gait recognition is a biometric identification method that can be realized under long-distance and no-contact conditions. Its applications in criminal investigations and security inspections are thus broad. Most existing gait recognition methods adopted the gait energy image (GEI) for feature extraction. However, the GEI method ignores the dynamic information of gait, which causes the recognition performance to be greatly affected by viewing angle changes and the subject's belongings and clothes. To solve these problems, in this paper a cross-view gait recognition method that uses a dual-stream network based on the fusion of dynamic and static features (FDSN) is proposed. First, the static features are extracted from the GEI and the dynamic features are extracted from the image sequence of the human's lower limbs. Then, the two features are fused, and finally, a nearest neighbor classifier is used for classification. Comparative experiments on the CASIA-B dataset created by the Automation Institute of the Chinese Academy of Sciences showed that the FDSN achieves a higher recognition rate than a convolutional neural network (CNN) and Gaitset under changes in viewing angle or clothing. To meet our requirements, in this study a gait image dataset was collected and produced in a campus setting. The experimental results on this dataset show the effectiveness of the FDSN in terms of eliminating the effects of disruptive changes.
引用
收藏
页码:671 / 678
页数:8
相关论文
共 50 条
  • [21] Cross-View Gait Recognition with Deep Universal Linear Embeddings
    Zhang, Shaoxiong
    Wang, Yunhong
    Li, Annan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9091 - 9100
  • [22] Coupled locality preserving projections for cross-view gait recognition
    Xu, Wanjiang
    Luo, Can
    Ji, Aiming
    Zhu, Canyan
    [J]. NEUROCOMPUTING, 2017, 224 : 37 - 44
  • [23] A general tensor representation framework for cross-view gait recognition
    Ben, Xianye
    Zhang, Peng
    Lai, Zhihui
    Yan, Rui
    Zhai, Xinliang
    Meng, Weixiao
    [J]. PATTERN RECOGNITION, 2019, 90 : 87 - 98
  • [24] Coupled Bilinear Discriminant Projection for Cross-View Gait Recognition
    Ben, Xianye
    Gong, Chen
    Zhang, Peng
    Yan, Rui
    Wu, Qiang
    Meng, Weixiao
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 734 - 747
  • [25] GaitSet: Cross-View Gait Recognition Through Utilizing Gait As a Deep Set
    Chao, Hanqing
    Wang, Kun
    He, Yiwei
    Zhang, Junping
    Feng, Jianfeng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3467 - 3478
  • [26] Cross-Database Micro-Expression Recognition Based on a Dual-Stream Convolutional Neural Network
    Song, Baolin
    Zong, Yuan
    Li, Ke
    Zhu, Jie
    Shi, Jingang
    Zhao, Li
    [J]. IEEE ACCESS, 2022, 10 : 66227 - 66237
  • [27] VIEW TRANSFORMATION-BASED CROSS-VIEW GAIT RECOGNITION USING TRANSFORMATION CONSISTENCY MEASURE
    Muramatsu, Daigo
    Makihara, Yasushi
    Yagi, Yasushi
    [J]. 2ND INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF2014), 2014,
  • [28] A non-linear view transformations model for cross-view gait recognition
    Khan, Muhammad Hassan
    Farid, Muhammad Shahid
    Grzegorzek, Marcin
    [J]. NEUROCOMPUTING, 2020, 402 : 100 - 111
  • [29] View Transformation Model Incorporating Quality Measures for Cross-View Gait Recognition
    Muramatsu, Daigo
    Makihara, Yasushi
    Yagi, Yasushi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1602 - 1615
  • [30] Cross-View Gait Recognition Using View-Dependent Discriminative Analysis
    Mansur, Al
    Makihara, Yasushi
    Muramatsu, Daigo
    Yagi, Yasushi
    [J]. 2014 IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2014), 2014,