A general tensor representation framework for cross-view gait recognition

被引:70
|
作者
Ben, Xianye [1 ]
Zhang, Peng [1 ,2 ]
Lai, Zhihui [3 ]
Yan, Rui [4 ]
Zhai, Xinliang [1 ]
Meng, Weixiao [5 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Shandong, Peoples R China
[2] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[4] Microsoft AI & Res, Bellevue, WA 98004 USA
[5] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150080, Heilongjiang, Peoples R China
基金
国家重点研发计划;
关键词
Gait recognition; Cross-view gait; Tensor representation; Framework; DISCRIMINANT-ANALYSIS; TRANSFORMATION MODEL; REGULARIZATION;
D O I
10.1016/j.patcog.2019.01.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tensor analysis methods have played an important role in identifying human gaits using high dimensional data. However, when view angles change, it becomes more and more difficult to recognize cross-view gait by learning only a set of multi-linear projection matrices. To address this problem, a general tensor representation framework for cross-view gait recognition is proposed in this paper. There are three criteria of tensorial coupled mappings in the proposed framework. (1) Coupled multi-linear locality-preserved criterion (CMLP) aims to detect the essential tensorial manifold structure via preserving local information. (2) Coupled multi-linear marginal fisher criterion (CMMF) aims to encode the intra-class compactness and inter-class separability with local relationships. (3) Coupled multi-linear discriminant analysis criterion (CMDA) aims to minimize the intra-class scatter and maximize the inter-class scatter. For the three tensor algorithms for cross-view gaits, two sets of multi-linear projection matrices are iteratively learned using alternating projection optimization procedures. The proposed methods are compared with the recently published cross-view gait recognition approaches on CASIA(B) and OU-ISIR gait database. The results demonstrate that the performances of the proposed methods are superior to existing state-of-theart cross-view gait recognition approaches. (C) 2019 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [1] Multi-view Discriminant Analysis with Tensor Representation and Its Application to Cross-view Gait Recognition
    Makihara, Yasushi
    Al Mansur
    Muramatsu, Daigo
    Uddin, Zasim
    Yagi, Yasushi
    2015 11TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), VOL. 1, 2015,
  • [2] An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics
    Chandrashekhar Padole
    Hugo Proença
    Pattern Analysis and Applications, 2017, 20 : 73 - 86
  • [3] An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics
    Padole, Chandrashekhar
    Proenca, Hugo
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (01) : 73 - 86
  • [4] GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition
    Chao, Hanqing
    He, Yiwei
    Zhang, Junping
    Feng, Jianfeng
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8126 - 8133
  • [5] Multi-View Gait Image Generation for Cross-View Gait Recognition
    Chen, Xin
    Luo, Xizhao
    Weng, Jian
    Luo, Weiqi
    Li, Huiting
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3041 - 3055
  • [6] Gait recognition: solving the key cross-view challenge
    Sinno S.
    Hu B.
    Guan Y.
    Biometric Technology Today, 2020, 2020 (04) : 5 - 7
  • [7] GaitAMR: Cross-view gait recognition via aggregated multi-feature representation
    Chen, Jianyu
    Wang, Zhongyuan
    Zheng, Caixia
    Zeng, Kangli
    Zou, Qin
    Cui, Laizhong
    INFORMATION SCIENCES, 2023, 636
  • [8] Cross-view gait recognition through ensemble learning
    Wang, Xiuhui
    Yan, Wei Qi
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11): : 7275 - 7287
  • [9] Cross-View Gait Recognition Using Joint Bayesian
    Li, Chao
    Sun, Shouqian
    Chen, Xiaoyu
    Min, Xin
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [10] Cross-view gait recognition through ensemble learning
    Xiuhui Wang
    Wei Qi Yan
    Neural Computing and Applications, 2020, 32 : 7275 - 7287