Pulsating feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a nonsymmetric potential

被引:4
|
作者
Litak, G. [1 ]
Ali, M. [2 ]
Saha, L. M. [3 ]
机构
[1] Tech Univ Lublin, Dept Appl Mech, PL-20618 Lublin, Poland
[2] Univ Delhi, Fac Math Sci, Dept Math, Delhi 110007, India
[3] Univ Delhi, Zakhir Husain Coll, Delhi 110002, India
来源
关键词
nonlinear vibration; chaos control;
D O I
10.1142/S0218127407018774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine a strange chaotic attractor and its unstable periodic orbits in case of one-degree of freedom nonlinear oscillator with nonsymmetric potential. We propose an efficient method of chaos control stabilizing these orbits by a pulsating feedback technique. Discrete set of pulses enable us to transfer the system from one periodic state to another.
引用
收藏
页码:2797 / 2803
页数:7
相关论文
共 50 条
  • [41] A new method for stabilizing unstable periodic orbits of continuous-time systems. Application to control of chaos
    Chagas, Thiago P.
    Bliman, Pierre-Alexandre
    Kienitz, Karl H.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2146 - 2151
  • [42] Stabilization of unstable periodic orbits for discrete time chaotic systems by using periodic feedback
    Morgül, Ö
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (02): : 311 - 323
  • [43] Stabilization of multi-rotation unstable periodic orbits through dynamic extended delayed feedback control
    Zheng, Y. G.
    Yu, J. L.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 161
  • [44] Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control
    Parmananda, P.
    Madrigal, R.
    Rivera, M.
    Nyikos, L.
    Kiss, I.Z.
    Gaspar, V.
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (5 pt A):
  • [45] Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control
    Parmananda, P
    Madrigal, R
    Rivera, M
    Nyikos, L
    Kiss, IZ
    Gáspár, V
    [J]. PHYSICAL REVIEW E, 1999, 59 (05): : 5266 - 5271
  • [46] Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals
    Konishi, Keiji
    Ishii, Morio
    Kokame, Hideki
    [J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (4-A pt A):
  • [47] UNSTABLE PERIODIC-ORBITS IN THE FIELD OF A ROTATIONALLY SYMMETRIC POTENTIAL
    AGEKYAN, TA
    ORLOV, VV
    [J]. SOVIET ASTRONOMY LETTERS, 1989, 15 (04): : 329 - 331
  • [48] STABILIZING UNSTABLE PERIODIC TRAJECTORIES OF CHAOTIC SYSTEMS WITH TIME-VARYING SWITCHING DELAYED FEEDBACK CONTROL
    Zeng J.
    Zheng Y.
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (12): : 3477 - 3485
  • [49] Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals
    Konishi, K
    Ishii, M
    Kokame, H
    [J]. PHYSICAL REVIEW E, 1996, 54 (04): : 3455 - 3460
  • [50] On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows
    Crofts, Jonathan J.
    Davidchack, Ruslan L.
    [J]. CHAOS, 2009, 19 (03)