Pulsating feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a nonsymmetric potential

被引:4
|
作者
Litak, G. [1 ]
Ali, M. [2 ]
Saha, L. M. [3 ]
机构
[1] Tech Univ Lublin, Dept Appl Mech, PL-20618 Lublin, Poland
[2] Univ Delhi, Fac Math Sci, Dept Math, Delhi 110007, India
[3] Univ Delhi, Zakhir Husain Coll, Delhi 110002, India
来源
关键词
nonlinear vibration; chaos control;
D O I
10.1142/S0218127407018774
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine a strange chaotic attractor and its unstable periodic orbits in case of one-degree of freedom nonlinear oscillator with nonsymmetric potential. We propose an efficient method of chaos control stabilizing these orbits by a pulsating feedback technique. Discrete set of pulses enable us to transfer the system from one periodic state to another.
引用
收藏
页码:2797 / 2803
页数:7
相关论文
共 50 条
  • [31] STABILIZATION OF UNSTABLE STEADY STATES AND UNSTABLE PERIODIC ORBITS BY FEEDBACK WITH VARIABLE DELAY
    Gjurchinovski, A.
    Urumov, V.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (1-2): : 36 - 49
  • [32] Growth and performance of the periodic orbits of a nonlinear driven oscillator
    de Lima, D. R.
    Caldas, I. L.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 150
  • [33] CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK
    BIELAWSKI, S
    DEROZIER, D
    GLORIEUX, P
    [J]. PHYSICAL REVIEW E, 1994, 49 (02): : R971 - R974
  • [34] Nonlinear Time Series Analysis in Unstable Periodic Orbits Identification-Control Methods of Nonlinear Systems
    Ivan, Cosmin
    Arva, Mihai Catalin
    [J]. ELECTRONICS, 2022, 11 (06)
  • [35] Controller synthesis for stabilizing periodic orbits in forced nonlinear systems
    Basso, M
    Genesio, R
    Tesi, A
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1888 - 1893
  • [36] Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation
    Brown, G.
    Postlethwaite, C. M.
    Silber, M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (9-10) : 859 - 871
  • [37] Control-Based Continuation of Unstable Periodic Orbits
    Sieber, Jan
    Krauskopf, Bernd
    Wagg, David
    Neild, Simon
    Gonzalez-Buelga, Alicia
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (01):
  • [38] CONTROL-BASED CONTINUATION OF UNSTABLE PERIODIC ORBITS
    Sieber, Jan
    Krauskopf, Bernd
    Wagg, David
    Neild, Simon
    Gonzalez-Buelga, Alicia
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 331 - 340
  • [39] Entrainment control of chaos near unstable periodic orbits
    Mettin, R
    [J]. IUTAM SYMPOSIUM ON INTERACTION BETWEEN DYNAMICS AND CONTROL IN ADVANCED MECHANICAL SYSTEMS, 1997, 52 : 231 - 238
  • [40] A new method for stabilizing unstable periodic orbits of continuous-time systems. Application to control of chaos
    Chagas, Thiago P.
    Bliman, Pierre-Alexandre
    Kienitz, Karl H.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2146 - 2151