On the rigidity of constant mean curvature complete vertical graphs in warped products

被引:28
|
作者
Aquino, C. F. [2 ]
de Lima, H. F. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
关键词
Warped products; Hyperbolic space; Euclidean space; Complete vertical graphs; Constant mean curvature; Bernstein-type theorems; RIEMANNIAN-MANIFOLDS; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1016/j.difgeo.2011.04.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate constant mean curvature complete vertical graphs in a warped product, which is supposed to satisfy an appropriated convergence condition. In this setting, under suitable restrictions on the values of the mean curvature and the norm of the gradient of the height function, we obtain rigidity theorems concerning to such graphs. Furthermore, applications to the hyperbolic and Euclidean spaces are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:590 / 596
页数:7
相关论文
共 50 条
  • [21] CONSTANT MEAN CURVATURE SURFACES IN WARPED PRODUCT MANIFOLDS
    Brendle, Simon
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 247 - 269
  • [22] Rigidity theorems for hypersurfaces with constant mean curvature
    Melendez, Josue
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 385 - 404
  • [23] Rigidity theorems for hypersurfaces with constant mean curvature
    Josué Meléndez
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 385 - 404
  • [24] The rigidity of embedded constant mean curvature surfaces
    Meeks, William H., III
    Tinaglia, Giuseppe
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 660 : 181 - 190
  • [25] Constant mean curvature surfaces in warped product manifolds
    Simon Brendle
    [J]. Publications mathématiques de l'IHÉS, 2013, 117 : 247 - 269
  • [26] On uniqueness of graphs with constant mean curvature
    Lopez, Rafael
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (04): : 771 - 787
  • [27] Lower bounds on Ricci curvature and the almost rigidity of warped products
    Cheeger, J
    Colding, TH
    [J]. ANNALS OF MATHEMATICS, 1996, 144 (01) : 189 - 237
  • [28] Aspects of Mean Curvature Flow Solitons in Warped Products
    Domingos, Iury
    Santos, Marcio
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [29] REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS
    Colombo, Giulio
    Mari, Luciano
    Rigoli, Marco
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1957 - 1991
  • [30] Aspects of Mean Curvature Flow Solitons in Warped Products
    Iury Domingos
    Márcio Santos
    [J]. Results in Mathematics, 2023, 78