Spatio-Temporal Action Detector with Self-Attention

被引:2
|
作者
Ma, Xurui [1 ]
Luo, Zhigang [1 ,2 ]
Zhang, Xiang [1 ,3 ,4 ]
Liao, Qing [5 ]
Shen, Xingyu [1 ]
Wang, Mengzhu [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Lab, Changsha 410073, Hunan, Peoples R China
[3] Natl Univ Def Technol, Inst Quantum, Changsha 410073, Hunan, Peoples R China
[4] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[5] Harbin Inst Technol Shenzhen, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal action detection; self-attention; tubelets link algorithm;
D O I
10.1109/IJCNN52387.2021.9533300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of spatio-temporal action detection, some current studies attempt to solve the problem of action detection by using the one-stage object detectors based on anchor-free. Albeit efficiency, more performance boosts are expected. Towards this goal, a Self-Attention MovingCenter Detector (SAMOC) is proposed, which is blessed with two attractive aspects: 1) to effectively capture motion cues, a spatio-temporal self-attention block is explored to reinforce feature representation by aggregating motion-dependent global contexts, and 2) a link branch serves to model the frame-level object dependency, which promotes the confidence scores of correct actions. Experiments on two benchmark datasets show that SAMOC with the proposed two aspects achieves the state-of-the-art and works in real-time as well.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Resstanet: deep residual spatio-temporal attention network for violent action recognition
    Pandey A.
    Kumar P.
    [J]. International Journal of Information Technology, 2024, 16 (5) : 2891 - 2900
  • [42] Human Action Recognition Algorithm Based on Spatio-Temporal Interactive Attention Model
    Pan Na
    Jiang Min
    Kong Jun
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (18)
  • [43] Cascading spatio-temporal attention network for real-time action detection
    Yang, Jianhua
    Wang, Ke
    Li, Ruifeng
    Perner, Petra
    [J]. MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [44] Interaction-Aware Spatio-Temporal Pyramid Attention Networks for Action Classification
    Hu, Weiming
    Liu, Haowei
    Du, Yang
    Yuan, Chunfeng
    Li, Bing
    Maybank, Stephen John
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 7010 - 7028
  • [45] Interaction-Aware Spatio-Temporal Pyramid Attention Networks for Action Classification
    Du, Yang
    Yuan, Chunfeng
    Li, Bing
    Zhao, Lili
    Li, Yangxi
    Hu, Weiming
    [J]. COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 388 - 404
  • [46] Cascading spatio-temporal attention network for real-time action detection
    Jianhua Yang
    Ke Wang
    Ruifeng Li
    Petra Perner
    [J]. Machine Vision and Applications, 2023, 34
  • [47] Spatio-Temporal Saliency for Action Similarity
    Burghouts, G. J.
    van den Broek, S. P.
    ten Hove, R. J. M.
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 257 - 262
  • [48] Discovering spatio-temporal action tubes
    Ye, Yuancheng
    Yang, Xiaodong
    Tian, YingLi
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 58 : 515 - 524
  • [49] Spatio-Temporal Action Graph Networks
    Herzig, Roei
    Levi, Elad
    Xu, Huijuan
    Gao, Hang
    Brosh, Eli
    Wang, Xiaolong
    Globerson, Amir
    Darrell, Trevor
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2347 - 2356
  • [50] Spatio-Temporal Memory Attention for Image Captioning
    Ji, Junzhong
    Xu, Cheng
    Zhang, Xiaodan
    Wang, Boyue
    Song, Xinhang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7615 - 7628